

ARCHIVES OF AGRICULTURE SCIENCES JOURNAL

Volume 6, Issue 1, 2023, Pages 226-248

Available online at www.agricuta.edu.eg

DOI: https://dx.doi.org/10.21608/aasj.2023.165590.1132

Combining ability of anther culture response in some rice crosses under drought stress conditions

El-Hennawy M. A.ª, El-Beially I. E.ª, El-Refaee Y. Z.^b, Hawash A. A.^{a*}

^aDepartment of Agronomy, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt ^bRice Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt

Abstract

Anther culture response of ten rice parental genotypes and their 24 F₁ crosses was studied to estimate combining ability effects for callus induction and plant regeneration under drought stress conditions. The analysis of variance showed that drought stress levels mean squares were found to be highly significant for all in vitro studied traits. The percentage of anthers that developed calli ranged from 12.92% for the IRRI 148 to 45.00% for the cross $L_1 \times T_3$ among the genotypes across the four different stress levels of PEG. The control (PEG-free medium) gave the highest mean value of callus induction (41.33%). On the other hand, the medium containing 30 g/l of PEG gave the lowest one (14.28%) across all genotypes. Results showed that the three crosses $(L_1 \times T_2, L_1 \times T_3 \text{ and } L_3 \times T_1)$ gave the highest mean values of plant regeneration (9.50%, 8.00 and 7.92% respectively). The percentage of plant regeneration from the control medium was 7.12%, while the medium containing 30 g/l of PEG gave the lowest one across all genotypes (3.76%). The ratio of GCA/SCA was found less than unity for all in vitro studied traits under the four stress levels, revealing the predominant role of dominance gene action in the inheritance of these traits. Results showed that the IRGC (T_3) followed by Giza 177 (L_1) were the best combiners for callus induction under varying concentrations of PEG due to their highly significant positive GCA values. For plant regeneration, one parental genotype Giza 177 (L1) was the best combiner for plant regeneration under varying concentrations of PEG due to their highly significant positive GCA values. The two crosses; $L_3 \times T_1$ and $L_1 \times T_2$ recorded the highest SCA effects for plant regeneration and green plant regeneration under the four stress levels.

Keywords: rice, anther culture, combining ability, drought stress.

*Corresponding author: Hawash A. A., *E-mail address:* abdelmonemhawash2020@gmail.com

1. Introduction

Rice (Oryza sativa L.) is a widely grown global grain that feeds most of the world's population and will continue to play an important role in global food and livelihood security. The requirement for sustainable strategy to improve rice production remains an immense problem due to limited water resources and diverse biotic and abiotic stresses. The total production in Egypt reached 4.44 million tons produced from an area of about 1.18 million feddan (CAPMAS, 2020). Rice consumes around 20% of Egypt's total water resources during the summer season and occupies about 22% of the entire growing area. Because Egypt's water supplies are restricted, the total water requirements for rice crops are a severe challenge due to the limited irrigation water accessible from the Nile. Some rice-growing areas, particularly those near the termini of terminal irrigation canals in the northern section of the Nile Delta, have irrigation water shortages at various phases of growth, which is regarded one of Egypt's most important restrictions to rice production (Abd Allah et al., 2009). Therefore, one of the major aims of rice breeding for increasing rice production in Egypt is the development of water stress-tolerant genotypes with high yield potential. Traditional methods of breeding for water stress tolerance are timeconsuming and inefficient. Tissue culture as a promising technology for obtaining the desired characteristics of variants can lead to the expected outcomes. In contrast, the likelihood of achieving in vitro selection is dependent on the availability of an effective regeneration system in combination with an effective selective agent (Dita et al., 2006; Jain, 2001, Predieri, 2001; Predieri and Virgilio, 2007; Rai et al., 2011). One of the most essential techniques in plant breeding and genetic analysis is haploid production. This is important, especially when it is used with common plant breeding approaches to produce desired features. Anther cultures, one of the haploid plant generation methods, are now widely used in rice breeding. Rice pure lines are produced utilizing the anther culture method in a very short time and with assurance in the genetic purity of the derived lines. Many factors influence the effectiveness of the anther culture reaction for androgenic calli and plant regeneration, including genotype, physiological age of the donor plant, and culture media (Mercy, 1990). Callus induction from anther culture is influenced by the culture medium and genotype. The genotypic number of chromosomes in haploid plants is the same as the number of chromosomes in a sporophyte. Different ways can be used to produce haploidy, with microspore androgenesis being the most promising and successful. Using biotechnological techniques like anther culture, many novel rice cultivars have been produced (Brown and Thorpe, 1995; Zapata et al., 2004). In rice and other cereal crops, however, poor regeneration and low

haploid efficiency have been the most important limiting factors. Although plants naturally produce haploids, in vitro anther culture or androgenesis is the efficient and straightforward most method for producing haploids or doubling haploids in a lot of species (Forster et al., 2007). Doubled haploid breeding by anther culture has emerged as an intriguing and potent technology for crop development, as well as a practical alternative to traditional methods (Purwoko et al., 2010). Doubled haploids provide a number of advantages, including a shorter breeding cycle due to fast homozygosity fixation, high selection efficiency, increased genetic variety via gametoclonal variations, and early expression of recessive genes appropriate for breeding (Devaux and Pickering 2005). There are numerous reviews that explain how androgenesis produces double haploids and how they are used (Germana, 2011; Touraev et al., 2009; Seguí-Simarro 2010). According to Kim et al. (1991) the best response to anther culture came from a hybrid of Japonica × Japonica, Indica × Japonica, and finally Indica \times Indica rice cultivars. induction Callus and green plant regeneration are strongly affected by genotype medium× genotype and interaction, according to a study determine the conducted to callus induction and green regeneration heredity of genotypes derived via diallel analysis of four rice cultivars (Quimio and Zapata, 1990). One of the most critical variables in callus formation from cultured anthers is the culture media. Androgenesis and the growth of created embryos have separate nutritional requirements (Zapata et al., 1990). One of the most common methods is to use high molecular weight osmotic chemicals such as polyethylene glycol (PEG). PEG was used to select callus and plantlets for in vitro drought stress induction. PEG 6000 is a non-permeable, non-toxic osmotic material that has been used to imitate drought stress in cultured plant tissues by lowering the water potential of the culture medium (Hamayun et al., 2010). The development of efficient and reliable callus induction and plant regeneration technologies is required for in vitro selection for abiotic stress resistance (Wani et al., 2010). Several including rice, have crops. been successfully in vitro selected for drought tolerance utilizing polyethylene glycol (PEG), sorbitol, mannitol, and agar as selection agents (Biswas et al., 2002). Water is withdrawn not only by the cell but also by the cell wall since PEG does not enter the apoplast. In comparison to other low molecular weight osmotica, PEG simulates drying soil in а comparable way and has been used to simulate drought stress in plants as well as the selection of tolerant cell lines (Nepomuceno et al., 1998). Drought breeding tolerance necessitates а thorough understanding of gene function as well as the ability of drought characteristics and yield components to combine underwater stress and non-stress situations. Given that the success of any 228

plant breeding program is determined not only by the parents chosen but also by the breeding procedures used (Can et al., 1997; Torres and Geraldi, 2007). Therefore, appropriate breeding methodology should be devised. The knowledge of combining ability is useful nicking ability to assess among genotypes and, at the same time, explicate the nature and magnitude of gene actions involved (Dar et al., 2014). Line \times tester (Kempthorne, 1957) mating designs provide dependable information about the general and specific combining ability (GCA and SCA) of parents and their cross combinations and are helpful in estimating various types of gene actions (Verma, 2003). The objective of the present investigation was to study the anther culture response of some rice parental genotypes and their F₁ crosses under drought stress treatments as well as to gather information on the genetic behavior of anther culture response under PEG stress treatments in a total of ten parents and their crosses of rice.

2. Materials and methods

The present investigation was carried out the Cell and Tissue Culture at Laboratory, Agronomy Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt and Experimental Farm and the the laboratories of the Rice Research and Training Center, Agricultural Research Center, Sakha, Kafr El-Sheikh, Egypt during the period from 2018 to 2020. Ten rice genotypes were selected in this study, namely; Giza 177, Giza 178, Sakha104, Sakha107, IRRI 148, IRAT 112, IRGC 1165, N22, IRRI 163 and Azucena, which represented a wide range of diversity for several traits. In season 2018, the ten parental genotypes were crossed according to line × tester mating design (Kempthorne, 1957). The first four genotypes were used as female parents (Lines) and the last six genotypes were utilized as male parents (Testers), respectively. In the 2019 season, the ten parental genotypes and their crosses (24 F₁ crosses) were planted at the Experimental Farm to obtain the needed anthers. The ten genotypes and their 24 F₁ crosses were evaluated in anther culture under the four stress levels from polyethylene glycol 6000 (PEG) for their ability to initiate callus and plant regeneration. For evaluation of the anther culture responses of ten parental genotypes and 24 F_1 crosses under drought stress conditions, panicles were gathered, and microspores were microscopically examined. panicles carrying anthers with microspores at the mid to late uninucleate stage were surface sterilized with 20% chlorax solution commercial bleach (1.05%)NaOCl) for 20 minutes and washed three times in sterile distilled water. Excised anthers were then placed on the N6 induction medium supplemented with various levels of polyethylene glycol 6000 (0, 10, 20, and 30 g/l PEG). The experimental design was a completely 229

randomized design including 34 genotypes and 10 replicates for each genotype. After 5-6 weeks of culture, the number of responsive anthers was recorded. When the calli induced from the anthers reached the cotyledonary stage, they were transferred to jars containing MS regeneration medium (Murashige and Skoog, 1962) supplemented with 2.5 mg/l Kin, 0.5 NAA mg/l and 30 g/l sucrose, and 8 g/l agar with various levels of polyethylene glycol 6000 (0, 10, 20, and 30 g/l PEG). These jars were incubated for 5-6 weeks at 25-27 °C with 16 h of light. Welldeveloped shoots were transferred to 1/2 MS basal medium supplemented with 0.2 NAA mg/l for root initiation, elongation and their development. The number of regenerated shoots and plantlets was counted. Plantlets with adequate root formation were transplanted to small pots with a mixture of soil, sand, and compost under plastic cover for three weeks in a growth chamber maintained at 18 °C and 16 h light per day. The recorded data were subjected to the ordinary analysis of variance (Steel and Torrie, 1980) to determine the significant differences among crosses and parents' response stress under drought condition. Combining ability analysis was done using line x tester method (Kempthorne, 1957).

3. Results and Discussion

3.1 Effect of different drought stress

treatments on the anther culture response of rice genotypes

The analysis of variance for the studied traits under the four drought stress treatments (0, 10, 20 and 30 g/l PEG) and their combined data is presented in Table (1). Results showed that drought stress levels mean squares were found to be highly significant for all the studied traits, revealing that performance of the tested genotypes differed under the four stress levels. Similar results were also found by Wani et al. (2010). Mean squares due to genotypes, parents, crosses, line, tester and line \times tester were highly significant for all the studied traits under the four stress levels and their combined data. Also, highly significant mean squares due to the interaction of genotypes, parents, crosses, line, tester and line \times tester with PEG treatments were detected for all the studied traits except albino plant regeneration, indicating that these genotypes varied in their response to PEG stress levels for most of the studied traits. These results are in agreement with those obtained by Akte et al. (2016), and Sabesan and Saravanan (2016). Parent vs. crosses mean squares (Table 1) as an indication to average heterosis overall crosses were found to be highly significant for all the studied traits under the four stress levels and the combined data. Moreover, the interaction of parents vs. crosses with drought stress levels was found to be highly significant for all in vitro studied traits except albino plant regeneration.

		df.				PE	G - stress leve	els g/l				
Source of variation	s	Comb.		Callu	is induction	(%)			Plant r	egenerati	on (%)	
	3	Comb.	Control	10	20	30	Comb.	Control	10	20	30	Comb.
PEG-stress levels (L)	-	3	-	-	-	-	4252.70**	-	-	-	-	65.12**
Genotypes(G)	33	33	141.65**	56.47**	40.80**	16.53**	143.81**	4.81**	2.19**	1.20**	1.06**	7.58**
Parents (P)	9	9	57.48**	52.45**	26.45**	8.11**	113.65**	2.31**	1.83**	0.56**	0.40**	3.52**
Crosses (C)	23	23	56.58**	43.21**	48.15**	19.82**	108.13**	4.93**	2.20**	1.36**	1.26**	8.28**
P vs. C	1	1	2856.01**	397.60**	0.99**	16.83**	1235.81**	24.43**	5.24**	3.19**	2.37**	27.87**
Lines	3	3	39.15**	64.40**	105.25**	38.34**	205.79**	11.61**	5.42**	4.14**	4.10**	23.37**
Testers	5	5	85.59**	92.38**	64.33**	17.49**	183.78**	2.99**	1.62**	0.52*	0.68**	4.36**
$Lines \times Testers$	15	15	50.39**	22.58**	31.33**	16.89**	63.37**	4.24**	1.75**	1.08**	0.88**	6.57**
$G \times L$	-	99	-	-	-	-	37.23**	-	-	-	-	0.56**
$P \times L$	-	27	-	-	-	-	10.28**	-	-	-	-	0.53**
$C \times L$	-	69	-	-	-	-	19.90**	-	-	-	-	0.49**
Lines × L	-	9	-	-	-	-	13.77**	-	-	-	-	0.63**
Testers \times L	-	15	-	-	-	-	25.31**	-	-	-	-	0.48**
$Lines \times Testers \times L$	-	45	-	-	-	-	19.32**	-	-	-	-	0.46**
P vs. $C \times L$	-	1	-	-	-	-	2035.35**	-	-	-	-	7.37**
Error	297	1188	0.14	0.17	0.17	0.16	0.16	0.24	0.22	0.18	0.13	0.20
		d.f.				PE	G - stress leve	els g/l				
Source of variation	s	Comb.		Green pla	ant regenera	tion (%)		A	Albino pla	ant regene	eration (%	5)
	3	Como.	Control	10	20	30	Comb.	Control	10	20	30	Comb.
PEG -stress levels (L)	-	3	-	-	-	-	40.02**	-	-	-	-	12.77**
Genotypes (G)	33	33	4.46**	1.93**	1.22**	0.85**	6.73**	0.95**	0.56**	0.47**	0.42**	1.88**
Parents (P)	9	9	2.85**	2.09**	0.62**	0.47**	4.59**	0.53**	0.40*	0.40*	0.50**	1.62**
Crosses (C)	23	23	4.39**	1.52**	1.01**	0.83**	5.94**	1.05**	0.46**	0.31	0.29*	1.47**
P vs. C	1	1	20.39**	9.93**	11.48**	4.56**	44.19**	2.50**	4.29**	4.65**	2.66**	13.72**
Lines	3	3	9.06**	4.82**	2.54**	2.36**	16.60**	4.28**	2.19**	1.20**	0.68**	7.26**
Testers	5	5	2.64**	0.21**	0.69**	0.55**	2.05**	0.65**	0.19	0.04	0.30	0.56*
Lines × Testers	15	15	4.05**	1.30**	0.80**	0.62**	5.10**	0.54**	0.20	0.22	0.21	0.61**
$G \times L$	-	99	-	-	-	-	0.59**	-	-	-	-	0.18
$P \times L$	-	27	-	-	-	-	0.48**	-	-	-	-	0.07
$C \times L$	-	69	-	-	-	-	0.62**	-	-	-	-	0.23
Lines \times L	-	9	-	-	-	-	0.62*	-	-	-	-	0.45*
Testers \times L	-	15	-	-	-	-	0.70**	-	-	-	-	0.19
$Lines \times Testers \times L$	-	45	-	-	-	-	0.59**	-	-	-	-	0.19
P vs. $C \times L$	-	1	-	-	-	-	2.63**	-	-	-	-	0.28
Error	297	1188	0.19	0.25	0.21	0.18	0.21	0.19	0.18	0.20	0.17	0.19

Table (1): Mean squares of single (S) and combined (Comb.) analysis of variance for the studied traits of rice genotypes under PEG - stress levels (L).

* and ** denote significant at 0.05 and 0.01 levels of probability, respectively.

The responses of the anther culture of ten rice parents and their F_1 crosses studied under different drought stress (PEG) treatments are presented in Table (2). Results showed that callus induction varied among the rice genotypes studied. The percentage of anthers that developed calli ranged from 12.92% for the IRRI 148 (T₁) to 45.00% for the cross $L_1 \times T_3$ among the genotypes across the four different stress levels of PEG (Table 2). The response of callus induction varied according to different concentrations used, indicating that the control (PEGfree medium) gave the highest mean value of callus induction (41.33%). On the other hand, the medium containing 30 g/l of PEG gave the lowest one (14.28%) across all genotypes (Table 2, and Figures 1 and 2). Results presented in Table (2) showed that the cross ($L_2 \times T_1$) gave the highest percentage of callus induction (63.33%) in control, while the cross ($L_3 \times T_1$) gave the lowest one (6.67%) with medium containing 30 g/l of PEG. Our results showed that callus induction frequency response under PEG treatments was genotype dependent. The genetic constitution appeared to play a major role in callus induction under water stress. A decrease in callus induction is a typical response of the explants of species, including rice when subjected to PEG simulated drought stress (Wani et al., 2010). Anther derived calli upon subjection to different concentrations of PEG exhibited necrosis and reduction in survival percentage compared to control, suggesting the response to water stress is due to water shortage in the cells, which leads to a decrease in cell turgor and eventually cell growth effect of PEG (Sakthivelu et al., 2008). In the present investigation, callus induction percentage decreased with increasing concentrations of PEG in all genotypes (Figures 1 and 2). The decrease in callus induction, however, varied from one genotype to another and also between cultures of the same genotype. Biswas et al. (2002), Wani et al. (2010) and Tripathy (2015) reported similar results in rice. Mon et al. (2020) reported that the anther culture ability (callus induction and green plant regeneration) was dependent on genotypes. Therefore, the anther culture ability could be improved by crossing with high responsive genotypes.

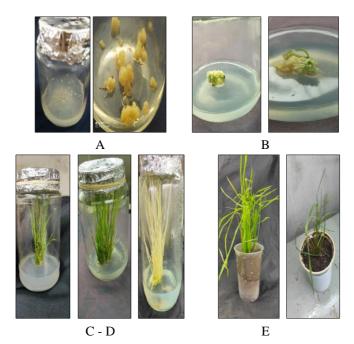


Figure (1): *In vitro* induction of haploid rice plants through anther culture grown on control (PEG-free medium) and their subsequent transfer to pots. A) Formation of callus in the cultured anthers. B) Callus differentiation into multiple shoots. C-D) Green and albino plantlets emerging from cultured anthers. E) plant transplanted from the jar to small pot with mixture of soil, sand and compost in greenhouse.

El-Hennawy et al. / Archives of Agriculture Sciences Journal 6(1) 226–248, 2023.

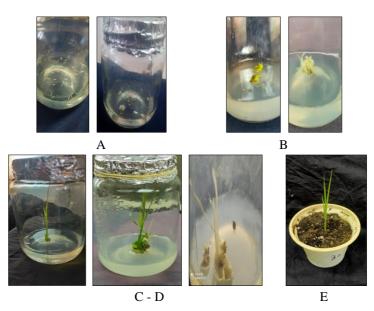


Figure (2): *In vitro* induction of haploid rice plants through anther culture grown on medium containing 30 g/l PEG and their subsequent transfer to pots. A) Formation of callus in the cultured anthers. B) Callus differentiation into multiple shoots. C-D) Green and albino plantlets emerging from cultured anthers. E) plant transplanted from the jar to small pot with mixture of soil, sand and compost in greenhouse.

The callus derived from anthers was subcultured on MS medium. When the calli were placed onto MS medium, some of calli differentiated into embryoids (Figure 1). However, many of calli did not differentiate and some of calli differentiated into shoots. Plant regeneration of the callus was dependent on the genotype and the culture medium employed. Effect of genotypes and PEG concentrations on the frequency of plant regeneration was presented in Table (2) and Figures (1 and 2). Results showed that the three crosses $(L_1 \times T_2, L_1 \times T_3)$ and $L_3 \times T_1$) produced the highest mean values of plant regeneration (9.50%, 8.00% and 7.92%, respectively), while the IRRI 163 (T₅) produced the lowest one (3.17%). The control medium (PEGfree medium) gave better response to plant regeneration as compared to the other media containing 10, 20 and 30 g/L of PEG. The percentage of plant regeneration from the control medium was 7.12 %. while the medium containing 30 g/l of PEG gave the lowest one across all genotypes (3.76%). (Table 2, and Figures 1 and 2). Results presented in Table (2) indicated strong interaction between genotypes and concentrations of PEG. The highest response to regenerated plants frequency was recorded for the cross $(L_1 \times T_2)$, when its cultures were grown on the control while the lowest response was recorded for the Sakha 107 (L₄) and cross 233

 $(L_3 \times T_4)$ on the medium containing 30 g/l of PEG (2.33%). These results demonstrated the efficiency of the regeneration medium used. Effect of

genotype on plant regeneration from callus cultures have been reported previously (Mon *et al.*, 2020; Sharma *et al.*, 2018; Tripathy *et al.*, 2019).

					PEG-stres	s levels (g/	1)			
Genotypes		Callus	inductio	n (%)			Plant 1	egenera	ation (%)	
	Control	10	20	30	Comb.	Control	10	20	30	Comb.
Giza 177 (L1)	40.00	32.00	24.33	19.67	29.00	8.00	7.33	5.00	4.67	6.25
Giza 178 (L ₂)	23.33	20.33	17.67	16.67	19.50	4.33	4.33	3.67	3.67	4.00
Sakha 104 (L3)	36.67	36.33	30.67	17.33	30.25	8.00	6.67	4.67	4.00	5.83
Sakha 107 (L4)	30.00	27.67	21.67	14.67	23.50	6.67	5.67	3.67	2.33	4.58
IRRI-148 (T1)	16.67	13.33	11.67	10.00	12.92	6.33	6.00	4.33	3.33	5.00
IRAT-112 (T ₂)	21.67	17.00	15.00	14.00	16.92	5.67	5.33	5.33	3.00	4.83
IRGC (T ₃)	23.33	20.00	20.00	19.67	20.75	4.33	3.67	3.33	3.33	3.67
N.22 (T ₄)	32.00	29.00	19.33	14.00	23.58	6.33	3.67	3.33	3.00	4.08
IRRI-163 (T5)	16.67	15.33	14.67	13.00	14.92	3.67	3.33	3.00	2.67	3.17
AZUCENA (T ₆)	23.33	21.00	20.67	15.33	20.08	4.00	3.67	3.67	3.33	3.67
$L_1 imes T_1$	56.67	46.67	25.67	15.33	36.08	9.00	7.67	5.67	4.33	6.67
$L_1 imes T_2$	42.00	25.67	16.67	13.33	24.42	13.67	10.00	7.67	6.67	9.50
$L_1 imes T_3$	60.00	47.67	43.33	29.00	45.00	12.00	7.33	6.67	6.00	8.00
$L_1 \times T_4 \\$	43.33	30.67	26.67	17.67	29.58	8.67	7.00	6.33	6.33	7.08
$L_1 imes T_5$	43.33	31.33	17.33	14.00	26.50	6.67	4.67	4.33	3.67	4.83
$L_1 imes T_6$	55.33	34.00	23.67	16.33	32.33	7.33	6.33	5.00	4.33	5.75
$L_2 \times T_1$	63.33	41.33	22.33	12.67	34.92	5.00	3.67	3.00	2.67	3.58
$L_2 imes T_2$	33.00	21.67	14.33	10.33	19.83	7.00	6.00	4.00	3.00	5.00
$L_2 imes T_3$	54.00	27.33	16.00	8.67	26.50	8.67	7.33	4.67	3.67	6.08
$L_2 imes T_4$	47.00	27.00	22.00	20.00	29.00	9.33	6.33	5.00	4.67	6.33
$L_2 imes T_5$	39.67	24.33	12.67	7.67	21.08	8.33	6.00	4.33	3.67	5.58
$L_2 imes T_6$	42.00	26.33	13.00	11.33	23.17	6.00	5.33	4.67	3.67	4.92
$L_3 \times T_1$	43.00	33.33	8.67	6.67	22.92	12.33	8.00	6.33	5.00	7.92
$L_3 imes T_2$	47.00	34.00	16.67	14.00	27.92	7.67	6.33	5.00	4.00	5.75
$L_3 imes T_3$	48.00	29.00	25.33	16.67	29.75	7.33	6.00	4.33	3.33	5.25
$L_3 imes T_4$	49.33	31.00	10.00	7.67	24.50	5.33	3.33	2.67	2.33	3.42
$L_3 imes T_5$	40.67	26.33	17.67	14.00	24.67	5.67	4.67	4.33	3.67	4.58
$L_3 imes T_6$	37.67	31.00	19.00	14.00	25.42	8.67	6.67	5.33	4.00	6.17
$L_4 imes T_1$	41.67	32.33	27.67	10.00	27.92	5.67	4.33	3.33	2.67	4.00
$L_4 imes T_2$	51.67	21.67	17.00	13.00	25.83	6.00	4.67	3.67	3.00	4.33
$L_4 \times T_3$	52.67	40.00	26.67	15.67	33.75	6.67	5.33	4.67	3.67	5.08
$L_4 imes T_4$	61.67	26.67	21.33	15.00	31.17	7.33	5.67	5.33	5.00	5.83
$L_4 imes T_5$	41.33	26.00	22.00	16.67	26.50	5.33	4.33	3.33	2.67	3.92
$L_4 imes T_6$	47.33	31.33	15.00	11.67	26.33	5.00	4.00	3.33	2.67	3.75
Mean	41.33	28.78	19.89	14.28	26.07	7.12	5.61	4.50	3.76	5.25
L.SD 0.05 PEG Levels (T)	-	-	-	-	0.06	-	-	-	-	0.06
L.SD 0.01					0.08					0.08
L.SD 0.05 Genotypes (G)	0.32	0.36	0.36	0.35	0.32	0.43	0.41	0.37	0.320.42	0.35
L.SD 0.01	0.42	0.47	0.47	0.46	0.42	0.56	0.54	0.49	0.520.72	0.46
L.SD 0.05 Interaction (T×G)	-	-	-	-	0.35	-	-	-	-	0.38
L.SD 0.01					0.46					0.50

Table (2): Effect of polyethylene glycol 6000 (PEG) concentrations on anther culture response of 24 F_1 rice crosses and their respective parents.

Bagheri and Jelodar (2008), and El-Hennawy *et al.* (2011) reported that plant regeneration from callus was found to be highly heritable. Genetic control of plant regeneration has been observed in several plant species and exploited in some cases to improve plant materials for use in tissue culture research including anther culture (Ali et al., 2021; Dewia et al., 2009; He et al., 2006). Results in Table (2) showed that plant regeneration ability of all the tested genotypes was decreased significantly with increasing concentrations of PEG in selective media. The tested genotypes differed in their ability to regenerate plants after exposure to PEG concentrations (10, 20 and 30 g/l of PEG). The three crosses (L_1 \times T_2 , L_1 \times T_3 and L_3 \times T_1) were most able to do this and were therefore the most tolerant genotypes with parent that exhibited very good tolerance, whereas the cross $(L_3 \times T_4)$ had a high sensitivity response, especially at the highest stress level of 30 g/l PEG (Table 2). The typical decrease in plant regeneration of crop plants in response to water stress is due to water shortage in the cells, which leads to a decrease in cell turgor and eventually cell growth. Addition of PEG-6000 in culture media lowers water potential of the medium that affect cell division leading to reduced callus growth and consequently influences regeneration (Ehsanpour and Razavizadeh 2005: Kacem et al., 2017; Sakthivelu et al., 2008). Germana (2011) reported that the exploitation of haploid and DHs as a powerful breeding tool requires the availability of reliable tissue culture protocols that can overcome several methodology problems, such as low frequencies of embryo induction, plant regeneration, albinism, plant survival and the genotype-dependent response, in order to improve the regeneration efficiency in a wider range of genotypes. He also reported that there is no single standard condition or protocol for inducing pollen-derived plant formation. In the present investigation, the presence of significant variation in callus induction and plant regeneration due to genotypes, concentrations of PEG and their interactions were observed. The frequencies of green plantlets achieved of ten parents and their crosses studied under the four PEG concentrations are presented in Table (3). Results showed that the two crosses $(L_1 \times T_2 \text{ and } L_3 \times$ T_1) produced the highest mean values of green plantlets (7.75 % and 7.00% respectively) compared to the parental Giza 177 (L_1) and Sakha 104 (L_3), which gave 4.67%, while the N.22 (T₄) produced the lowest one (1.25%). The control (PEG-free medium) gave better response to green plantlets as compared to the other media containing 10, 20 and 30 g/l of PEG. The percentage of green plantlets from the control was 5.43%. In contrast, the medium containing 30 g/l of PEG gave the lowest one (2.76%) across all genotypes (Table 3). The interaction between concentrations of PEG and genotypes was highly significant (Table 3). The highest frequency of green plantlets in the control was recorded for the cross $(L_1 \times T_2)$. On the contrary, the lowest number of green plantlets per 100 cultured anthers was observed for the N.22 (T₄) under the highest stress level 30 PEG. Similar results were obtained by El-Hennawy et al. (2011), Vennapusa et al. (2015), and Mon et al., (2020), who

found genotypic effect on green plant regeneration. As pointed out in different investigations, androgenic response in rice was a heritable trait and can be transferred into agriculturally desirable material by crossing (Mon et al., 2020). Moreover, previous studies also showed that anther culture capacity in rice was highly heritable and was controlled by nuclear genes (Kwon et al., 2002; Yamagishi et al., 1998). These results suggested that it might be possible to overcome the limitation through genetic recombination and transferring genes controlling anther culturability from the high response into poorly responsive lines. Many researchers revealed that callus induction and green-plant regeneration are independently inherited, and the two traits are not correlative (He et al., 1998; Zhu, 1992). The occurrence of albino plantlets, which is usually uncounted in most similar studies, composes a major problem for the application of anther culture technique in rice breeding programs. Results in Table (3) showed that the percentage of albino plantlets ranged from 0.83% for $L_2 \times T_1$ to 3.50% for the variety Giza 177 (L_1) among the genotypes across the four different concentrations of PEG (Table 3). The response of albino plantlets varied according to different concentrations used, indicating that the control (PEG-free medium) gave the highest mean value of albino plantlets (2.66%). On the other hand, the medium containing 30 g/l of PEG gave the lowest one (1.18%) across all genotypes. Furthermore, two genotypes ($L_1 \times T_4$ and $L_1 \times T_6$) gave the highest percentage of albino plantlets (5.00% and 4.67%, respectively) in control, while three genotypes ($L_2 \times T_1, L_2 \times T_6$ and $L_3 \times T_1$) gave the lowest one (0.33%) under the stress level of 30 g/l PEG (Table 3). Similar results were found by Hassawi et al. (2005), who observed genotypic effect on albino plant regeneration. Andersen et al. (1988), and Sharma et al. (2018) stated that the formation of albino plantlets was genetically and environmentally controlled. In addition to the effect of genotype and the duration of maintaining calli in culture, the development stage of microspore at inoculation time well as as the chloroplast DNA deletions may affect occurrence of albino plantlets (Liang et al., 1990). Sun et al. (1979), and Mohiuddin et al. (2014) reported that the basic cause of albinism in rice is impairment of DNA (probably due to presence of chemicals added to the media) in plastids or nuclei or in both. It also identified the absence of ribosomes in ill-developed plastids as another cause of albinism in rice. Biswas et al. (2002) stated that probably due to the interference of PEG in proplastid biosynthesis during morphogenesis. The results of the present study are in accordance with previous reports of Zamani et al. (2003), El-Hennawy et al. (2011), and Mon et al. (2020), who indicated that the genotype played an important role in anther culture. Furthermore, the three crosses $(L_1 \times T_2, T_2)$

L ₃	Х	T_1	an	d L ₁	×	T3)	with	the	highest
res	po	nse	in	anthe	er	cultu	re had	d pai	rent that

exhibited very good response under the four stress levels.

Table (3): Effect	of polyethylene	glycol 600	0 (PEG)	concentrations	on	anther	culture
response of 24 F1	rice crosses and the	heir respecti	ve parent	ts.			

						levels (g/l)				
Genotypes	Gre	een plan	t regene	ration (9			ino plar	nt regene	eration (%)
	Control	10	20	30	Comb.	Control	10	20	30	Comb.
Giza 177 (L ₁)	6.33	5.67	4.67	3.00	4.67	4.33	3.67	3.00	3.00	3.50
Giza 178 (L2)	3.00	3.00	2.92	2.67	2.92	3.67	3.67	3.00	2.67	3.25
Sakha 104 (L3)	6.33	5.33	4.83	3.33	4.67	3.33	2.67	2.67	2.00	2.67
Sakha 107 (L4)	6.00	3.67	3.67	2.33	3.67	3.00	2.67	2.33	2.00	2.50
IRRI-148 (T1)	5.67	5.00	3.67	2.00	3.67	2.33	2.00	1.67	1.00	1.75
IRAT-112 (T2)	3.67	2.67	2.67	2.33	2.83	3.33	2.67	1.67	1.33	2.25
IRGC (T ₃)	3.67	2.33	1.67	1.67	2.25	2.00	2.00	1.33	1.00	1.58
N.22 (T ₄)	1.33	1.33	1.25	1.00	1.25	4.00	2.67	2.67	1.33	2.67
IRRI-163 (T5)	3.00	2.67	2.17	1.33	2.17	2.33	1.67	1.67	1.00	1.67
AZUCENA (T ₆)	2.67	2.33	2.00	2.00	2.17	2.67	2.33	1.33	1.00	1.83
$L_1 \times T_1$	8.00	6.00	4.33	3.67	5.50	3.67	1.67	1.33	1.00	1.92
$L_1 \times T_2$	12.00	7.33	6.33	5.33	7.75	3.00	2.67	2.33	0.67	2.17
$L_1 \times T_3$	7.67	6.00	6.00	4.33	5.83	3.67	3.33	1.33	0.67	2.25
$L_1 \times T_4$	6.67	6.33	5.00	4.33	5.00	5.00	3.33	2.67	2.67	3.42
$L_1 imes T_5$	7.67	5.67	2.67	2.33	4.58	2.67	2.67	2.00	2.33	2.42
$L_1 \times T_6$	5.67	4.67	4.00	3.67	4.50	4.67	2.67	2.00	1.67	2.75
$L_2 \times T_1$	3.67	3.00	2.67	2.00	2.83	1.33	1.33	0.33	0.33	0.83
$L_2 \times T_2$	5.00	3.33	3.00	2.33	3.42	2.00	1.00	1.00	0.67	1.17
$L_2 \times T_3$	6.67	5.33	4.00	3.00	4.75	3.33	1.67	1.33	1.33	1.92
$L_2 \times T_4$	7.00	5.00	4.33	3.33	4.92	2.33	1.33	1.00	1.00	1.42
$L_2 \times T_5$	6.33	5.00	3.33	2.00	4.17	2.00	1.00	1.00	1.00	1.25
$L_2 \times T_6$	5.00	3.67	3.67	3.33	3.92	1.67	1.67	1.00	0.33	1.17
$L_3 \times T_1$	11.00	7.00	5.33	4.67	7.00	1.67	1.33	1.00	0.33	1.08
$L_3 \times T_2$	6.00	4.67	4.00	3.00	4.42	3.00	2.67	1.00	1.00	1.92
$L_3 \times T_3$	6.67	4.67	3.67	2.67	4.42	2.00	1.33	0.67	0.67	1.17
$L_3 imes T_4$	3.33	2.67	2.33	1.67	2.50	1.33	1.00	0.67	0.67	0.92
$L_3 \times T_5$	4.00	3.33	3.00	2.67	3.33	1.67	1.33	1.00	1.00	1.25
$L_3 \times T_6$	6.33	5.00	4.00	3.33	4.67	3.67	1.67	1.33	0.67	1.83
$L_4 \times T_1$	4.33	3.00	2.67	1.67	2.92	1.33	1.33	2.33	1.00	1.50
$L_4 \times T_2$	4.67	3.33	3.00	2.33	3.33	1.33	1.33	1.00	0.67	1.08
$L_4 \times T_3$	5.00	3.67	3.33	2.67	3.67	1.67	1.67	1.33	1.00	1.42
$L_4 \times T_4$	5.67	5.00	4.00	3.00	4.42	3.00	2.00	1.33	1.33	1.92
$L_4 \times T_5$	3.67	3.67	2.67	2.00	3.00	1.67	1.33	0.67	0.67	1.08
$L_4 \times T_6$	3.33	3.33	3.00	3.00	3.17	1.67	1.33	1.00	1.00	1.25
Mean	5.43	4.22	3.38	2.76	3.95	2.66	2.02	1.53	1.18	1.85
L.SD 0.05 PEG Levels (T)					0.07					0.07
L.SD 0.01	-	-	-	-	0.10	-	-	-	-	0.10
L.SD 0.05 Genotypes (G)	0.69	0.70	1.13	1.02	0.49	0.44	0.42	0.42	0.40	0.28
L.SD 0.01	0.91	0.92	1.49	1.34	0.65	0.57	0.55	0.56	0.53	0.37
L.SD 0.05 Interaction (T×G)					0.23					0.23
L.SD 0.01	-	-	-	-	0.31	-	-	-	-	0.31

These results indicate that one high responding parent could be used to generate responding F_1 hybrids, although there is no guarantee of a high response in the hybrids because the inheritance of an anther culture response may be more

complicated (Masojc *et al.*, 1993). Zamani *et al.* (2003) also reported that a well-responding parent could lead to the production of sufficient green plants for breeding purposes. In addition, the data obtained from this study indicate that hybrids originating from one parent with very good or intermediate performance in anther culture would be of value for developing an *in vitro* system with a high production of green plants under the drought stress conditions.

3.2 General and specific combining abilities for callus induction and plant regeneration under drought stress treatments in rice

Information on the inheritance or combining ability of plant regeneration in anther culture is of great importance in an attempt to increase the efficiency of anther culture (Can and Yoshida 1999). Hou *et al.* (1994) reported that by understanding the inheritance patterns of anther culture response, breeders could improve the procedures by crossing highly responsive with non-responsive genotypes and could predict the level of response of the hybrids or optimize the allocation of resources for doubled haploid production. The analysis of variance for the combining ability of different concentrations of polyethylene glycol (PEG) for all in vitro studied traits is presented in Table (4). Results revealed that variance due to general combining ability (GCA) was highly significant for callus induction under control, 10, 20 g/l PEG and the combined analysis. Furthermore, variance due to specific combining ability (SCA) was highly significant for all in vitro traits tested under the four stress levels and their combined analysis except albino plant regeneration under the stress levels of 10, 20 and 30 g/l PEG as well as combined data. These results indicate the importance of both additive and non-additive gene action in the expression of these traits.

Table (4): Mean squares of single (S) and combined (Comb.) analysis for general and specific combining abilities of F_1 rice crosses and their parents for the *in vitro* studied traits under drought stress levels (L).

		d.f.					PEG - stres	ss levels g/l				
Source of variation	s	Comb.		Callı	is induction	1 (%)			Plant	regeneratio	on (%)	
	3	Comb.	Control	10	20	30	Comb.	Control	10	۲.	30	Comb.
σ ² GCA	9	9	0.047**	0.156**	0.127**	0.022	1.366**	0.005	0.003	0.002	0.003	0.146**
σ ² SCA	23	23	5.026**	2.241**	3.117**	1.673**	1.579**	0.400**	0.153**	0.091**	0.075**	0.159**
$\sigma^2 GCA \times L$	I	27					0.004			-	-	0.002
$\sigma^2 SCA \times L$	1	69	-	-	-	-	1.913**	-	-	-	-	0.026*
Error	297	1188	0.014	0.017	0.017	0.016	0.016	0.024	0.022	0.018	0.013	0.020
$\sigma^2 GCA / \sigma^2 SCA$	-	-	0.009	0.070	0.041	0.013	0.865	0.013	0.019	0.021	0.040	0.915
$(\sigma^2 GCA \times L) / \sigma^2 GCA$	I	-					0.003			-	-	0.013
$(\sigma^2 SCA \times L) / \sigma^2 SCA$	1	-	-	-	-	-	1.211	-	-	-	-	0.165
		d.f.					PEG - stres	ss levels g/l				
Source of variation	s	Comb.		Green pla	ant regener	ation (%)			Albino pl	lant regener	ration (%)	
	c	Como.	Control	10	20	30	Comb.	Control	10	20	30	Comb.
$\sigma^2 GCA$	9	9	0.005	0.002	0.001	0.002	0.085**	0.004	0.002	0.001	0.001	0.066**
σ ² SCA	23	23	0.341**	0.102**	0.066**	0.044**	0.122**	0.034*	0.002	0.002	0.004	0.010
$\sigma^2 GCA \times L$	-	27	-	-	-	-	0.001	-	-	-	-	0.003
$\sigma^2 SCA \times L$	-	69	-	-	-	-	0.038**	-	-	-	-	0.001
Error	297	1188	0.019	0.025	0.021	0.018	0.021	0.019	0.018	0.020	0.017	0.019
$\sigma^2 GCA / \sigma^2 SCA$	I	-	0.015	0.019	0.015	0.045	0.694	0.118	0.975	0.500	0.250	6.535
$(\sigma^2 GCA \times L) / \sigma^2 GCA$	1	-	-	-	-	-	0.017	-	-	-	-	0.030
$(\sigma^2 SCA \times L) / \sigma^2 SCA$	-	-	-	-	-	-	0.311	-	-	-	-	0.050

* and ** denote significant at 0.05 and 0.01 levels of probability, respectively.

However, the ratio of GCA/SCA was found to be less than unity for all *in vitro* studied traits under the four stress levels, revealing the predominant role of dominance gene action in the inheritance of these traits. He *et al.* (2006), and Al-Ashkar (2014) also reported similar results for all *in vitro* traits. On the other hand, Yan *et al.* (1996), and Bagheri and jelodar (2008), found that general combining ability variances were greater than specific combining ability ones for callus formation in rice. The ratio for SCA × PEG stress levels / SCA was higher than GCA × PEG stress levels / GCA for all traits studied. These results indicated that non-additive genetic effects were much more influenced by the drought stress levels than additive genetic effects in these traits. Such results indicate that PEG stress treatments are considered as an effective factor for declaring GCA and SCA. Thus, the breeder should utilize the appropriate breeding method under each drought stress for developing desired rice genotypes. Similar results were obtained by Gholizadeh et al. (2018). Estimates of general combining ability effects for each parent under PEG stress treatments are presented in Table (5).

Table (5): Estimates of general combining ability effects of ten rice parents tested for the *in vitro* studied traits under four drought stress treatments.

				PEG - stres	s levels (g/l)			
Parents		Callus ind	uction (%)			plant regen	eration (%)	
	Control	10	20	30	Control	10	20	30
Lines								
Giza 177 (L1)	0.762**	1.467**	1.658**	1.142**	0.558**	0.388**	0.371**	0.383**
Giza 178 (L2)	-0.321**	-0.933**	-0.992**	-0.608**	-0.092	-0.029	-0.129*	-0.117*
Sakha 104 (L3)	-0.988**	-0.100*	-1.142**	-0.492**	0.042	-0.013	-0.013	-0.067
Sakha 107(L4)	0.546**	0.433**	0.475**	-0.042	-0.508**	-0.346**	-0.229**	-0.200**
SE (gi)	0.047	0.053	0.053	0.052	0.063	0.060	0.054	0.047
SE (gi- gj)	0.067	0.075	0.075	0.074	0.090	0.085	0.076	0.067
Testers								
IRRI-148 (T1)	1.079**	2.192**	0.317**	-0.792**	0.092	0.013	-0.038	-0.083
IRAT-112 (T2)	-1.246**	-1.608**	-1.158**	-0.342**	0.267**	0.263**	0.113	0.067
IRGC (T ₃)	1.829**	1.467**	2.342**	1.108**	0.292**	0.188*	0.113	0.067
N.22 (T ₄)	0.829**	-0.683**	- 0.008	0.383**	-0.008	-0.087	0.037	0.192**
IRRI-163 (T5)	-1.896**	-1.233**	-0.783**	-0.217**	-0.358**	-0.288**	-0.188**	-0.158**
AZUCENA (T ₆)	-0.596**	-0.133*	-0.708**	-0.142*	-0.283**	-0.087	-0.038	-0.083
SE (gi)	0.058	0.065	0.065	0.064	0.078	0.073	0.067	0.058
SE (gi- gj)	0.082	0.091	0.092	0.090	0.110	0.104	0.094	0.082
				PEG - stress	s levels (g/l)			
Parents	(Green plant re	generation (%)	A	Albino plant re	generation (%)
	Control	10	20	30	Control	10	20	30
Lines								
Giza 177 (L1)	0.567**	0.417**	0.288**	0.279**	0.392**	0.283**	0.200**	0.154**
Giza 178 (L2)	-0.133*	-0.117	-0.079	-0.104	-0.108	-0.133*	-0.100	-0.063
Sakha 104 (L3)	0.050	-0.017	-0.013	-0.004	-0.075	-0.067	-0.100	-0.079
Sakha 107(L ₄)	-0.483**	-0.283**	-0.196**	-0.171**	-0.208**	-0.083	0.000	-0.013
SE (gi)	0.055	0.064	0.059	0.062	0.057	0.055	0.058	0.053
SE (gi- gj)	0.077	0.091	0.083	0.088	0.081	0.078	0.082	0.075
Testers								
IRRI-148 (T1)	0.208**	0.042	-0.004	-0.004	-0.142*	-0.108	-0.008	-0.096
IRAT-112 (T2)	0.258**	0.017	0.096	0.071	-0.042	0.042	0.017	-0.071
IRGC (T ₃)	0.133*	0.092	0.146*	0.046	0.058	0.067	-0.033	-0.021
N.22 (T ₄)	-0.117	0.042	0.021	0.021	0.133	0.042	0.042	0.129*
IRRI-163 (T5)	-0.192**	-0.058	-0.229**	-0.229**	-0.142*	-0.058	-0.033	0.079
AZUCENA (T ₆)	-0.292**	-0.133	-0.029	0.096	0.133	0.017	0.017	-0.021
SE (gi)	0.067	0.078	0.072	0.076	0.070	0.068	0.071	0.065
SE (gi- gj)	0.095	0.111	0.102	0.107	0.099	0.096	0.0101	0.092

* and ** denote significant at 0.05 and 0.01 levels of probability, respectively.

Results showed that the IRGC (T_3) followed by Giza 177 (L_1) were the best combiners for callus induction under varying concentrations of PEG due to their highly significant positive GCA values, revealing the great value of such parents as promising progenitors for high callus induction. On the other hand, the five parents; IRRI 163 (T₅), IRAT 112 (T_2) , Azucena (T_6) , Sakha 104 (L_3) and Giza 178 (L₂) showed negative general combining ability effects for this trait under drought stress conditions. For plant regeneration, one parental genotype Giza 177 (L_1) was the best combiner for plant regeneration under varying concentrations of PEG due to their highly significant positive GCA values, revealing the great value of such parents as promising progenitors for plant regeneration. On the other hand, IRRI 163 (T₅), Sakha 107 (L_4) and Azucena (T_6) had poor general combiners as they showed negative GCA effects in the four stress treatments. For green plant regeneration, positive general combining ability effects were detected for Giza 177 (L₁) and IRGC (T₃) under control and some stress levels. On the other hand, Sakha 107 (L₄) and IRRI 163 (T_5) had poor general combiners as they showed negative GCA effects in the four stress treatments. For albino plant regeneration, positive general combining ability effects were detected for Giza 177 (L_1) under the four stress levels. On the other hand, Giza 178 (L₂) and Sakha 107 (L₄) had poor general combiners as they showed negative GCA effects under stress conditions. drought Specific combining ability effects (SCA) for each cross are shown in Table (6). Results indicated that 3 out of 24 crosses showed highly significant and positive specific combining ability effects for callus induction under the four stress levels (control, 10, 20 and 30 g/l PEG). They included three types of combinations; high \times high, low \times high and low \times low general combining ability effects. The significant desirable SCA effects were obtained in 3 out of 24 F1 crosses for plant regeneration under the four stress levels. The three crosses; $L_3 \times T_1$, $L_1 \times T_2$ and $L_4 \times T_4$ recorded the highest SCA effects for plant regeneration under the four stress levels. Therefore, these crosses could be of great value for a rice selection anther culture system in breeding programs. For green plant regeneration, highly significant and positive SCA effects were detected in the two crosses; $L_3 \times T_1$ and $L_1 \times T_2$ under drought stress conditions. In contrast, negative specific combining ability effects were observed in seven crosses for this trait under the four stress levels. It is worthy to note that it is not necessary that parents having high estimates of GCA effects would also give high estimates of SCA effects. In the cross ($L_4 \times T_3$) for callus induction under control and 20 g/l PEG and in the cross $(L_1 \times T_3)$ for plant regeneration under the 10 g/l PEG, both parents involved had high GCA effects, but gave comparatively very low SCA effects. El-Hennawy et al. (2016) found that low SCA effects in such cases might be attributed to some

internal cancellation of favourable factors or to genetic similarity of the involved parents.

Table (6): Est	imat	es o	f sj	pecific	combin	ning al	bility e	effects	of 24 F	r_1 rice
crosses	tested	for	the	in	vitro	studied	traits	under	four	drought	stress
treatmen	nts.										

				PEG - stress	s levels (g/l)			
Crosses		Callus ind	uction (%)			Plant regen	eration (%)	
	Control	10	20	30	Control	10	20	30
$L_1 \times T_1$	0.888**	1.008**	-0.283*	0.108	-0.258	0.138	-0.046	-0.183
$L_1 \times T_2$	-1.188**	-1.492**	-1.508**	-0.942**	0.967**	0.588**	0.404**	0.367**
$L_1 \times T_3$	1.138**	2.033**	2.992**	2.308**	0.442**	-0.138	0.104	0.167
$L_1 \times T_4$	-2.863**	-0.917**	0.342**	-0.367**	-0.258	0.038	0.079	0.142
$L_1 \times T_5$	-0.137	-0.167	-1.683**	-0.867**	-0.508**	-0.463**	-0.296*	-0.308**
$L_1 \times T_6$	2.163**	-0.467**	0.142	-0.242	-0.383*	-0.163	-0.246	-0.183
$L_2 \times T_1$	3.971**	1.808**	1.367**	1.058**	-0.808**	-0.646**	-0.346**	-0.183
$L_2 \times T_1$ $L_2 \times T_2$	-2.804**	-0.292*	0.442**	-0.092	-0.383*	-0.196	-0.196	-0.233*
$L_2 \times T_2$ L ₂ × T ₃	0.421**	-1.667**	-2.558**	-2.042**	0.092	0.279	0.004	-0.033
$L_2 \times T_3$ $L_2 \times T_4$	-0.679**	0.383**	1.592**	2.083**	0.592**	0.254	0.179	0.142
$L_2 \times T_4$ $L_2 \times T_5$	-0.154**	0.133	-0.433**	-1.017**	0.642**	0.354*	0.204	0.142
$L_2 \times T_5$ $L_2 \times T_6$	-0.754**	-0.367**	-0.408**	0.008	-0.133	-0.046	0.204	0.192
$L_2 \times T_6$ $L_3 \times T_1$	-1.463**	-1.425**	-2.583**	-0.858**	1.258**	0.638**	0.134	0.467**
$L_3 \times T_1$ $L_3 \times T_2$	2.063**	2.575**	1.292**	0.892**	-0.317*	-0.113	-0.012	0.407
$L_3 \times T_2$ $L_3 \times T_3$	-0.713**	-2.000**	0.392**	0.892	-0.317*	-0.113	-0.012	-0.183
$L_3 \times T_4$	0.688**	0.750**	-1.858**	-1.733**	-0.742**	-0.663**	-0.638**	-0.608**
$L_3 \times T_5$	0.813**	-0.100	1.217**	0.767**	-0.292	-0.063	0.088	0.142
$L_3 \times T_6$	-1.388**	0.200	1.542**	0.692**	0.533**	0.338*	0.238	0.167
$L_4 \times T_1$	-3.396**	-1.392**	1.500**	-0.308*	-0.192	-0.129	-0.146	-0.100
$L_4 \times T_2$	1.929**	-0.792**	-0.225	0.142	-0.267	-0.279	-0.196	-0.150
$L_4 \times T_3$	-0.846**	1.633**	-0.825**	-0.508**	-0.092	-0.004	0.104	0.050
$L_4 \times T_4$	2.854**	-0.217	-0.075	0.017	0.408**	0.371*	0.379**	0.325**
$L_4 \times T_5$	-0.521**	0.133	0.900**	1.117**	0.158	0.171	0.004	-0.025
$L_4 \times T_6 \\$	-0.021	0.633**	-1.275**	-0.458**	-0.017	-0.129	-0.146	-0.100
SE (sij)	0.116	0.132	0.125	0.128	0.155	0.147	0.133	0.116
SE (sij-sik)	0.164	0.186	0.177					
	0.104	0.180	0.177	0.181	0.220	0.208	0.189	0.164
				PEG - stress	s levels (g/l)			
Crosses	G	reen plant re	generation (9	PEG - stress	s levels (g/l) Al	lbino plant re	generation (9	%)
Crosses	G Control	reen plant re 10	generation (% 20	PEG - stress 6) 30	s levels (g/l) Al Control	bino plant re 10	generation (9 20	%) 30
Crosses $L_1 \times T_1$	G Control -0.192	reen plant re 10 -0.042	generation (9 20 -0.113	PEG - stress 6) 30 -0.079	s levels (g/l) Al Control 0.108	bino plant re 10 -0.208	generation (9 20 -0.175	%) <u>30</u> -0.054
$\begin{array}{c} Crosses\\ \hline L_1 \times T_1\\ \hline L_1 \times T_2 \end{array}$	G Control -0.192 0.958**	reen plant re 10 -0.042 0.383*	generation (9 20 -0.113 0.388**	PEG - stress 6) -0.079 0.346**	s levels (g/l) Al Control 0.108 -0.192	bino plant re 10 -0.208 -0.058	generation (9 20 -0.175 0.100	<mark>%)</mark> -0.054 -0.179
$\begin{array}{c} \mathbf{Crosses} \\ \mathbf{L}_1 \times \mathbf{T}_1 \\ \mathbf{L}_1 \times \mathbf{T}_2 \\ \mathbf{L}_1 \times \mathbf{T}_3 \end{array}$	G Control -0.192 0.958** -0.217	reen plant re 10 -0.042 0.383* -0.092	generation (9 20 -0.113 0.388** 0.238	PEG - stress 6) -0.079 0.346** 0.071	s levels (g/l) Al Control 0.108 -0.192 -0.092	bino plant re 10 -0.208 -0.058 0.117	generation (9 20 -0.175 0.100 -0.150	%) <u>30</u> -0.054 -0.179 -0.229
$\begin{array}{c} \textbf{Crosses} \\ \textbf{L}_1 \times \textbf{T}_1 \\ \textbf{L}_1 \times \textbf{T}_2 \\ \textbf{L}_1 \times \textbf{T}_3 \\ \textbf{L}_1 \times \textbf{T}_4 \end{array}$	G Control -0.192 0.958** -0.217 -0.267*	reen plant re 10 -0.042 0.383* -0.092 0.058	generation (% 20 -0.113 0.388** 0.238 0.063	PEG - stress 6) -0.079 0.346** 0.071 0.096	S levels (g/l) Al Control 0.108 -0.192 -0.092 0.233 0.233	bino plant re 10 -0.208 -0.058 0.117 0.142	generation (9 20 -0.175 0.100 -0.150 0.175	%) -0.054 -0.179 -0.229 0.221
$\begin{array}{c} \textbf{Crosses} \\ \textbf{L}_1 \times \textbf{T}_1 \\ \textbf{L}_1 \times \textbf{T}_2 \\ \textbf{L}_1 \times \textbf{T}_3 \\ \textbf{L}_1 \times \textbf{T}_4 \\ \textbf{L}_1 \times \textbf{T}_5 \end{array}$	G Control -0.192 0.958** -0.217 -0.267* 0.108	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388**	PEG - stress 30 -0.079 0.346** 0.071 0.096 -0.254	S levels (g/l) Control 0.108 -0.192 -0.092 0.233 -0.192	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042	generation (9 20 -0.175 0.100 -0.150 0.175 0.050	%) -0.054 -0.179 -0.229 0.221 0.171
$\begin{array}{c} \textbf{Crosses} \\ \textbf{L}_1 \times \textbf{T}_1 \\ \textbf{L}_1 \times \textbf{T}_2 \\ \textbf{L}_1 \times \textbf{T}_3 \\ \textbf{L}_1 \times \textbf{T}_4 \end{array}$	G Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392**	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388** -0.188	PEG - stress 6) -0.079 0.346** 0.071 0.096 -0.254 -0.179	s levels (g/l) A Control 0.108 -0.192 -0.092 0.233 -0.192 0.133	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033	generation (9 20 -0.175 0.100 -0.150 0.175 0.050 0.000	<mark>30</mark> -0.054 -0.179 -0.229 0.221 0.171 0.071
$\begin{array}{c} \textbf{Crosses} \\ \textbf{L}_1 \times \textbf{T}_1 \\ \textbf{L}_1 \times \textbf{T}_2 \\ \textbf{L}_1 \times \textbf{T}_3 \\ \textbf{L}_1 \times \textbf{T}_4 \\ \textbf{L}_1 \times \textbf{T}_5 \end{array}$	G Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392** -0.792**	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408**	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246	PEG - stress 6) -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196	S levels (g/l) Control 0.108 -0.192 -0.092 0.233 -0.192	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042	generation (5 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175	30 -0.054 -0.179 -0.229 0.221 0.171 -0.071
$\begin{array}{c} { { { { { { { { { { { { { { { { { { $	G Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392**	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246 -0.246	PEG - stress 6) -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171	k levels (g/l) Control 0.108 -0.192 -0.092 0.233 -0.192 0.133 -0.092 0.008	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033 0.108 -0.142	generation (9 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175 0.000	%) -0.054 -0.179 -0.229 0.221 0.171 0.071 -0.038 0.038
$\begin{tabular}{ c c c c c } \hline Crosses & & \\ \hline L_1 \times T_1 & \\ \hline L_1 \times T_2 & \\ \hline L_1 \times T_3 & \\ \hline L_1 \times T_4 & \\ \hline L_1 \times T_6 & \\ \hline L_2 \times T_1 & \\ \hline L_2 \times T_1 & \\ \hline L_2 \times T_2 & \\ \hline L_2 \times T_3 & \\ \hline \end{tabular}$	G Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392** -0.792**	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408**	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246	PEG - stress 6) -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196	s levels (g/l) A Control 0.108 -0.192 -0.092 0.233 -0.192 0.133 -0.092	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033 0.108	generation (5 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175	30 -0.054 -0.179 -0.229 0.221 0.171 -0.071
$\begin{array}{c} { { { { { { { { { { { { { { { { { { $	Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392** -0.792** -0.442**	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246 -0.246	PEG - stress 6) -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171	k levels (g/l) Control 0.108 -0.192 -0.092 0.233 -0.192 0.133 -0.092 0.008	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033 0.108 -0.142	generation (9 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175 0.000	%) -0.054 -0.179 -0.229 0.221 0.171 0.071 -0.038 0.038
$\begin{tabular}{ c c c c c } \hline Crosses & & \\ \hline L_1 \times T_1 & \\ \hline L_1 \times T_2 & \\ \hline L_1 \times T_3 & \\ \hline L_1 \times T_4 & \\ \hline L_1 \times T_6 & \\ \hline L_2 \times T_1 & \\ \hline L_2 \times T_1 & \\ \hline L_2 \times T_2 & \\ \hline L_2 \times T_3 & \\ \hline \end{tabular}$	Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392** -0.792** -0.442** 0.183	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242	20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246 -0.246 0.004	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054	k levels (g/l) Control 0.108 -0.192 -0.092 0.233 -0.192 0.133 -0.092 0.008 0.308*	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033 0.108 -0.142 0.033	generation (9 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175 0.000 0.150	30 -0.054 -0.179 -0.229 0.221 0.171 0.071 -0.038 0.188
$\begin{tabular}{ c c c c c } \hline Crosses & & \\ \hline L_1 \times T_1 & \\ \hline L_1 \times T_2 & \\ \hline L_1 \times T_3 & \\ \hline L_1 \times T_4 & \\ \hline L_1 \times T_5 & \\ \hline L_1 \times T_6 & \\ \hline L_2 \times T_1 & \\ \hline L_2 \times T_1 & \\ \hline L_2 \times T_2 & \\ \hline L_2 \times T_3 & \\ \hline L_2 \times T_4 & \\ \hline \end{tabular}$	G Control -0.192 -0.217 -0.267* 0.108 -0.392** -0.792** -0.792** 0.183 0.533**	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192	20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246 -0.246 0.004 0.229	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179	Ievels (g/l) Control 0.108 -0.192 -0.233 -0.192 0.133 -0.092 0.038* -0.067	bino plant re 10 -0.208 -0.058 0.117 0.142 -0.033 0.108 -0.142 0.033 -0.042	generation (9 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175 0.000 0.150 -0.025	%) -0.054 -0.179 -0.229 0.221 0.171 -0.038 0.038 0.038 -0.063
$\begin{tabular}{ c c c c c } \hline Crosses & & \\ \hline Li \times T_1 & \\ \hline L_i \times T_2 & \\ \hline L_i \times T_3 & \\ \hline L_i \times T_4 & \\ \hline L_i \times T_6 & \\ \hline L_2 \times T_1 & \\ \hline L_2 \times T_1 & \\ \hline L_2 \times T_4 & \\ \hline L_2 \times T_5 & \\ \hline \end{array}$	Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392** -0.792** 0.42** 0.183 0.533** 0.408**	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192 0.292	20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246 -0.246 0.004 0.229 0.179	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.029	Ievels (g/l) Al Control 0.108 -0.192 -0.233 -0.192 0.133 -0.092 0.008 0.308* -0.067 0.108	bino plant re 10 -0.208 -0.058 -0.058 0.117 0.142 -0.042 -0.033 -0.142 0.033 -0.042 -0.042 -0.042	generation (9 20 -0.175 0.100 -0.150 0.050 0.000 -0.175 0.000 0.150 -0.025 0.050	30 -0.054 -0.179 -0.229 0.221 0.171 -0.038 0.038 0.188 -0.063 -0.013
$\begin{array}{c} {\color{red} {\rm Crosses}} \\ {\color{red} {\rm L}_i \times {\rm T}_1} \\ {\color{red} {\rm L}_i \times {\rm T}_2} \\ {\color{red} {\rm L}_i \times {\rm T}_3} \\ {\color{red} {\rm L}_i \times {\rm T}_3} \\ {\color{red} {\rm L}_i \times {\rm T}_5} \\ {\color{red} {\rm L}_i \times {\rm T}_5} \\ {\color{red} {\rm L}_i \times {\rm T}_5} \\ {\color{red} {\rm L}_2 \times {\rm T}_1} \\ {\color{red} {\rm L}_2 \times {\rm T}_2} \\ {\color{red} {\rm L}_2 \times {\rm T}_2} \\ {\color{red} {\rm L}_2 \times {\rm T}_5} \\ {\color{red} {\rm L}_2 \times {\rm T}_5} \\ {\color{red} {\rm L}_2 \times {\rm T}_6} \\ {\color{red} {\rm L}_2 \times {\rm T}_6} \end{array} \end{array}$	G Control -0.192 0.958** -0.217 -0.267* -0.302** -0.792** -0.442** 0.183 0.533** 0.408** 0.108	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192 0.292 -0.033	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246 -0.246 0.004 0.229 0.179 0.079	PEG - stress 6) -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.179 -0.171 0.054 0.179 0.029 0.104	k levels (g/l) A Control 0.108 -0.192 -0.092 0.233 -0.192 0.133 -0.092 0.008 0.308* -0.067 0.108 -0.267	bino plant re 10 -0.208 -0.058 0.117 0.142 -0.033 0.108 -0.142 0.033 -0.042 -0.042 -0.042 0.042 0.042	generation (9 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175 0.000 0.150 -0.025 0.050 0.000	%) 30 -0.054 -0.179 -0.229 0.221 0.171 0.071 -0.038 0.038 0.188 -0.063 -0.013 -0.113
$\begin{tabular}{ c c c c c } \hline Crosses & & \\ \hline L_1 \times T_1 & \\ \hline L_1 \times T_2 & \\ \hline L_1 \times T_3 & \\ \hline L_1 \times T_4 & \\ \hline L_1 \times T_6 & \\ \hline L_2 \times T_1 & \\ \hline L_2 \times T_1 & \\ \hline L_2 \times T_2 & \\ \hline L_2 \times T_3 & \\ \hline L_2 \times T_6 & \\ \hline L_3 \times T_1 & \\ \hline \end{tabular}$	Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392** -0.792** -0.792** -0.442** 0.183 0.533** 0.408** 0.108 1.225**	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192 0.292 -0.033 0.692**	generation (9 20 -0.113 0.388** 0.238 -0.388** -0.188 -0.246 -0.246 -0.246 0.004 0.229 0.179 0.079 0.488**	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.029 0.104 0.504**	Ievels (g/l) Al Control 0.108 -0.192 -0.33 -0.192 0.133 -0.092 0.008 0.308* -0.067 -0.108 -0.267 -0.025	bino plant re 10 -0.208 -0.058 0.117 0.142 -0.042 -0.033 0.108 -0.142 0.033 -0.042 -0.042 0.042 0.042	generation (9 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175 0.000 0.150 -0.025 0.050 0.000 0.025	%) 30 -0.054 -0.179 -0.229 0.221 0.171 0.071 -0.038 0.038 0.188 -0.063 -0.013 -0.013 -0.021
$\begin{tabular}{ c c c c c } \hline Crosses & & \\ \hline L_1 \times T_1 & \\ \hline L_1 \times T_2 & \\ \hline L_1 \times T_3 & \\ \hline L_1 \times T_4 & \\ \hline L_1 \times T_5 & \\ \hline L_2 \times T_1 & \\ \hline L_2 \times T_1 & \\ \hline L_2 \times T_2 & \\ \hline L_2 \times T_3 & \\ \hline L_2 \times T_4 & \\ \hline L_2 \times T_5 & \\ \hline L_2 \times T_6 & \\ \hline L_3 \times T_1 & \\ \hline L_3 \times T_2 & \\ \hline \end{tabular}$	Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392** -0.792** -0.422** 0.183 0.533** 0.408** 0.108 1.225** -0.325*	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192 0.292 -0.033 0.692** 0.017	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246 -0.246 0.004 0.229 0.179 0.488** -0.079 0.488** -0.013	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.029 0.104 0.504** -0.071	Ievels (g/l) All Control 0.108 -0.192 -0.33 -0.192 0.133 -0.092 0.0308* -0.067 0.108 -0.267 -0.25 0.275*	bino plant re 10 -0.208 -0.058 0.117 0.142 -0.033 -0.042 -0.033 -0.142 0.033 -0.042 -0.042 -0.042 0.083 0.042 0.292*	generation (9 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175 0.000 0.150 -0.025 0.000 0.000 0.025 0.000	%) 30 -0.054 -0.179 -0.229 0.221 0.171 0.071 -0.038 0.038 0.188 -0.063 -0.013 -0.013 -0.113 -0.021 0.154
$\begin{array}{c} {\color{red} {\rm Crosses}} \\ {\color{red} {\rm Li} \times {\rm T}_1} \\ {\color{red} {\rm Li} \times {\rm T}_2} \\ {\color{red} {\rm Li} \times {\rm T}_3} \\ {\color{red} {\rm Li} \times {\rm T}_3} \\ {\color{red} {\rm Li} \times {\rm T}_6} \\ {\color{red} {\rm Li} \times {\rm T}_7} \end{array} \end{array}$	G Control -0.192 0.958** -0.217 -0.267* -0.267* -0.392** -0.792** -0.442** 0.183 0.533** 0.408** 0.108 1.225** -0.325* 0.000	reen plant rej 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192 0.292 -0.033 0.692** 0.017 -0.058	generation (9 20 -0.113 0.388** 0.238 -0.388** -0.188 -0.246 -0.246 -0.246 0.004 0.229 0.179 0.079 0.488** -0.013 -0.163	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.029 0.104 0.504** -0.071 -0.071 -0.071 -0.146	k levels (g/l) A Control 0.108 -0.192 -0.092 0.233 -0.192 0.133 -0.092 0.008 0.308* -0.067 0.108 -0.267 -0.025 0.275* -0.125	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033 0.108 -0.142 0.033 -0.042 -0.042 -0.042 0.083 0.042 0.042 -0.042 0.042 -0.042 0.042 -0.133 -0.042 -0.042 -0.133 -0.042 -0.042 -0.042 -0.042 -0.133 -0.042 -0.042 -0.042 -0.042 -0.133 -0.042 -0.042 -0.042 -0.042 -0.133 -0.042 -0.04	generation (5 20 -0.175 0.100 -0.150 0.050 0.000 -0.175 0.000 0.150 -0.025 0.050 0.000 0.025 0.000 -0.050	%) 30 -0.054 -0.179 -0.229 0.221 0.171 0.071 -0.038 0.038 0.188 -0.063 -0.013 -0.013 -0.021 0.154 0.004
$\begin{array}{c} {\color{red} {\rm Crosses}} \\ {\color{red} {\rm L}_i \times {\rm T}_1} \\ {\color{red} {\rm L}_i \times {\rm T}_2} \\ {\color{red} {\rm L}_i \times {\rm T}_3} \\ {\color{red} {\rm L}_i \times {\rm T}_3} \\ {\color{red} {\rm L}_i \times {\rm T}_5} \\ {\color{red} {\rm L}_i \times {\rm T}_5} \\ {\color{red} {\rm L}_i \times {\rm T}_5} \\ {\color{red} {\rm L}_2 \times {\rm T}_1} \\ {\color{red} {\rm L}_2 \times {\rm T}_3} \\ {\color{red} {\rm L}_2 \times {\rm T}_3} \\ {\color{red} {\rm L}_2 \times {\rm T}_5} \\ {\color{red} {\rm L}_2 \times {\rm T}_6} \\ {\color{red} {\rm L}_2 \times {\rm T}_7} \\ {\color{red} {\rm L}_2 \times {\rm T}_6} \\ {\color{red} {\rm L}_3 \times {\rm T}_1} \\ {\color{red} {\rm L}_3 \times {\rm T}_2} \\ {\color{red} {\rm L}_3 \times {\rm T}_4} \\ {\color{red} {\rm L}_3 \times {\rm T}_4} \end{array} \end{array}$	G Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392** -0.792** -0.442** 0.183 0.533** 0.408** 0.108 1.225** -0.325* 0.000 -0.750**	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192 0.292 -0.033 0.692** 0.017 -0.058 -0.08**	generation (9 20 -0.113 0.388** 0.238 -0.388** -0.188 -0.246 -0.246 -0.246 0.004 0.229 0.179 0.488** -0.013 -0.163 -0.538**	PEG - stress 6) -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.104 0.504** -0.071 -0.146 -0.421**	k levels (g/l) Al Control 0.108 -0.192 -0.092 0.233 -0.192 0.133 -0.092 0.008 0.308* -0.067 -0.067 -0.025 0.275* -0.400**	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033 0.108 -0.142 0.033 -0.042 -0.042 0.033 0.042 0.033 0.042 0.033 0.042 0.033 0.042 0.033 0.042 0.033 0.042 0.033 0.042 0.033 0.028 0.033 0.028 0.033 0.028 0.033 0.028 0.033 0.042 0.033 0.028 0.033 0.028 0.033 0.028 0.033 0.028 0.033 0.028 0.033 0.028 0.033 0.048 0.033 0.048 0.033 0.042 0.033	generation (5 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175 0.000 0.150 -0.025 0.000 0.025 0.000 0.000 -0.050 -0.125	30 -0.054 -0.179 -0.229 0.221 0.171 0.038 0.038 -0.053 -0.063 -0.013 -0.013 -0.113 -0.021 0.154 0.004 -0.146
$ \begin{array}{c} {\bf Crosses} \\ {\bf L}_1 \times {\bf T}_1 \\ {\bf L}_1 \times {\bf T}_2 \\ {\bf L}_1 \times {\bf T}_3 \\ {\bf L}_1 \times {\bf T}_4 \\ {\bf L}_1 \times {\bf T}_5 \\ {\bf L}_1 \times {\bf T}_6 \\ {\bf L}_2 \times {\bf T}_1 \\ {\bf L}_2 \times {\bf T}_2 \\ {\bf L}_2 \times {\bf T}_3 \\ {\bf L}_2 \times {\bf T}_4 \\ {\bf L}_2 \times {\bf T}_5 \\ {\bf L}_3 \times {\bf T}_1 \\ {\bf L}_3 \times {\bf T}_2 \\ {\bf L}_3 \times {\bf T}_4 \\ {\bf L}_3 \times {\bf T}_5 \\ {\bf L}_3 \times {\bf T}_6 \end{array} $	G Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392** -0.442** 0.183 0.533** 0.408** 0.108 1.225** 0.000 -0.750** -0.475**	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192 0.292 -0.033 0.692** 0.017 -0.058 -0.058 -0.058* -0.308	generation (? 20 -0.113 0.388** 0.238 -0.13 -0.388** -0.388** -0.188 -0.246 -0.004 0.229 0.179 0.488** -0.013 -0.163 -0.538** 0.113	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.029 0.104 0.504** -0.071 -0.146 -0.421** 0.129 0.004	Ievels (g/l) Al Control 0.108 -0.192 -0.233 -0.192 0.133 -0.092 0.008 0.308* -0.067 -0.267 -0.255 0.275* -0.400** -0.025	bino plant re 10 -0.208 -0.058 0.117 0.142 -0.033 -0.042 -0.042 -0.042 -0.042 -0.042 0.083 0.042 0.042 0.292* -0.133 -0.208 -0.028 -0.028	generation (9 20 -0.175 0.100 -0.150 0.050 0.000 -0.175 0.000 0.150 -0.025 0.000 0.050 0.000 -0.025 0.000 -0.050 -0.050 -0.125 0.050 0.100	%) 30 -0.054 -0.179 -0.229 0.221 0.171 0.071 -0.038 0.038 0.038 0.038 -0.063 -0.013 -0.013 -0.013 -0.021 0.154 0.004 0.004
$\begin{array}{c} { { { { { { { { { { { { { { { { { { $	G Control -0.192 0.958** -0.217 -0.267* -0.267* -0.392** -0.442** 0.108 -0.332** -0.442** 0.108 1.225** -0.325* -0.325* -0.325* -0.325* -0.325* -0.242	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192 0.292 -0.033 0.692** 0.017 -0.058 -0.608** -0.058 -0.608** -0.058 -0.608** -0.242	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246 -0.246 -0.246 0.004 0.229 0.179 0.079 0.488** -0.133 -0.163 -0.538** 0.113 -0.129	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.029 0.104 0.504** -0.129 0.129 0.004 -0.229	Ievels (g/l) A Control 0.108 -0.192 0.233 -0.192 0.133 -0.092 0.308* -0.067 0.108 -0.257* -0.400** -0.025 0.300* 0.008	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033 0.108 -0.142 0.033 -0.042 -0.042 0.083 0.042 -0.042 0.083 0.042 -0.042 0.022* -0.133 -0.208 -0.008 -0.17 0.058	generation (5 20 -0.175 0.100 -0.150 0.050 0.000 -0.175 0.000 0.150 -0.025 0.050 0.000 0.025 0.000 -0.050 -0.025 0.050 0.000 -0.125 0.050 0.050 0.000 -0.125 0.050 0.000 0.125 0.050 0.000 0.025 0.000 -0.125 0.050 0.000 0.025 0.000 -0.125 0.050 0.000 -0.125 0.050 0.000 -0.150 -0.025 0.050 0.000 0.000 0.150 -0.025 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.150 -0.025 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	30 -0.054 -0.179 -0.229 0.221 0.171 0.071 -0.038 0.038 0.188 -0.063 -0.013 -0.013 -0.021 0.154 0.004 -0.044 0.004 0.113
$\begin{array}{c} {\color{red} {\rm Crosses}} \\ {\color{red} {\rm Li} \times {\rm T}_1} \\ {\color{red} {\rm Li} \times {\rm T}_2} \\ {\color{red} {\rm Li} \times {\rm T}_3} \\ {\color{red} {\rm Li} \times {\rm T}_3} \\ {\color{red} {\rm Li} \times {\rm T}_6} \\ {\color{red} {\rm Li} \times {\rm T}_6} \\ {\color{red} {\rm Li} \times {\rm T}_6} \\ {\color{red} {\rm Li} \times {\rm T}_7} \\ {\color{red} {\rm Li} \times {\rm T}_1} \\ {\color{red} {\rm Li} \times {\rm T}_7} \end{array} \end{array}$	G Control -0.192 0.958** -0.217 -0.267* -0.267* -0.792** -0.792** -0.442** 0.183 0.533** 0.408** 0.108 1.225** -0.325* -0.325* 0.000 -0.750** -0.475** -0.475** -0.242 -0.192	reen plant rej 10 -0.042 0.088 -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192 0.292 -0.033 0.692** 0.017 -0.058 -0.608** -0.308 0.267 -0.267 -0.242 -0.117	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246 -0.246 -0.246 -0.246 0.004 0.229 0.179 0.488** -0.13 -0.163 -0.538** 0.113 0.113 -0.129 -0.129	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.029 0.104 0.504** -0.071 -0.146 -0.421** 0.129 0.004 -0.229 -0.104	Ievels (g/l) All Control 0.108 -0.192 -0.233 -0.192 0.133 -0.092 0.0308* -0.067 0.108 -0.255*//>-0.025 -0.275*//>-0.125 -0.400**//>-0.008 -0.008 -0.008	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033 0.108 -0.142 0.033 -0.042 -0.042 0.083 0.042 0.083 0.042 0.092* -0.008 0.017 0.058 -0.092	generation (9 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175 0.000 0.150 -0.025 0.050 0.000 0.025 0.050 0.000 -0.125 0.050 0.000 -0.125 0.050 0.100 0.025 0.000 -0.125 0.050 0.100 0.025 0.000 -0.125 0.000 -0.125 0.000 -0.125 0.000 -0.150 -0.175 0.000 -0.175 0.000 -0.175 0.000 -0.175 0.000 0.000 -0.175 0.000 0.000 0.175 0.000 0.000 0.150 -0.025 0.000 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.000 0.005 0.000 0.000 0.005 0.000 0.000 0.005 0.000 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.005 0.000 0.005 0.000 0.025 0.050 0.000 0.025 0.050 0.000 0.025 0.050 0.000 0.025 0.050 0.000 0.025 0.000 0.025 0.000 0.025 0.0000 0.025 0.0000 0.025 0.0000 0.025 0.0000 0.025 0.0000 0.025 0.0000 0.025 0.0000 0.025 0.0000 0.025 0.0000 0.025 0.0000 0.025 0.0000 0.025 0.0000 0.025 0.0000 0.025 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	30 -0.054 -0.179 -0.229 0.221 0.171 0.038 0.038 0.188 -0.063 -0.013 -0.113 -0.021 0.154 0.004 -0.146 0.004 0.113 -0.013
$\begin{array}{c} {\bf Crosses} \\ {\bf L}_1 \times {\bf T}_1 \\ {\bf L}_1 \times {\bf T}_2 \\ {\bf L}_1 \times {\bf T}_3 \\ {\bf L}_1 \times {\bf T}_3 \\ {\bf L}_1 \times {\bf T}_5 \\ {\bf L}_1 \times {\bf T}_6 \\ {\bf L}_2 \times {\bf T}_1 \\ {\bf L}_2 \times {\bf T}_2 \\ {\bf L}_2 \times {\bf T}_3 \\ {\bf L}_2 \times {\bf T}_4 \\ {\bf L}_2 \times {\bf T}_5 \\ {\bf L}_2 \times {\bf T}_6 \\ {\bf L}_3 \times {\bf T}_1 \\ {\bf L}_3 \times {\bf T}_2 \\ {\bf L}_3 \times {\bf T}_3 \\ {\bf L}_3 \times {\bf T}_4 \\ {\bf L}_3 \times {\bf T}_5 \\ {\bf L}_3 \times {\bf T}_6 \\ {\bf L}_4 \times {\bf T}_1 \\ {\bf L}_4 \times {\bf T}_2 \\ {\bf L}_4 \times {\bf T}_3 \\ {\bf L}_4 \times {\bf T}_4 \\ {\bf L}$	Control -0.192 0.958** -0.217 -0.267* -0.267* -0.392** -0.792** -0.442** 0.183 0.533** 0.408** 0.408** 0.408** 0.408** 0.408** 0.408** 0.408** 0.405** -0.325* -0.475** 0.325* -0.475** 0.325* -0.475**	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192 0.292 -0.033 0.692** 0.017 -0.058 -0.608** -0.308 0.267 -0.242 -0.267 -0.242 -0.117 -0.92	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246 -0.246 0.004 0.229 0.179 0.488** -0.163 -0.163 -0.129 -0.129 -0.129 -0.129 -0.079	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.029 0.104 0.504** -0.071 -0.146 -0.421** 0.129 0.004 0.021	Ievels (g/l) Al Control 0.108 -0.192 -0.233 -0.192 0.133 -0.092 0.308* 0.308* -0.067 -0.125 -0.400** -0.025 0.300* -0.008	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033 0.108 -0.142 0.033 -0.042 0.058 0.042 0.058 0.042 0.058 0.042 0.058 0.042 0.058 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.007 0.005 0.007 0.007 0.005 0.007 0	generation (5 20 -0.175 0.100 -0.150 0.175 0.050 0.050 0.000 -0.175 0.000 0.175 0.000 0.175 0.000 0.025 0.000 0.025 0.000 0.025 0.000 -0.025 0.000 -0.050 -0.125 0.050 0.100 0.325* -0.100	30 -0.054 -0.179 -0.229 0.221 0.171 0.038 0.038 0.188 -0.063 -0.013 -0.013 -0.021 0.154 0.004 -0.146 0.004 0.113 -0.013
$\begin{array}{c} {\color{red} \textbf{Crosses}} \\ \hline \\ L_1 \times T_1 \\ L_1 \times T_2 \\ \hline \\ L_1 \times T_3 \\ \hline \\ L_1 \times T_4 \\ \hline \\ L_2 \times T_1 \\ \hline \\ L_2 \times T_1 \\ \hline \\ L_2 \times T_2 \\ \hline \\ L_2 \times T_2 \\ \hline \\ L_2 \times T_4 \\ \hline \\ L_2 \times T_5 \\ \hline \\ L_2 \times T_6 \\ \hline \\ L_3 \times T_1 \\ \hline \\ L_3 \times T_1 \\ \hline \\ L_3 \times T_4 \\ \hline \\ L_3 \times T_6 \\ \hline \\ L_3 \times T_6 \\ \hline \\ L_3 \times T_6 \\ \hline \\ L_4 \times T_1 \\ \hline \\ L_4 \times T_2 \\ \hline \\ L_4 \times T_1 \\ \hline \\ L_4 \times T_4 \\ \hline \\ L_4 \times T_4 \\ \hline \end{array}$	Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392** -0.442** 0.183 0.533** 0.408** 0.408** 0.408** 0.408** 0.408** 0.408** 0.408** 0.405** -0.475** 0.325* -0.475** 0.325* -0.475** 0.325* -0.475** 0.325* -0.475** 0.325* -0.475** 0.325* -0.475** 0.325* -0.325* -0.475** 0.325* -0.475** 0.325* -0.325* -0.475** -0.325* -0.475** -0.325* -0.325* -0.475** -0.325* -0.35* -0.55* -0.55* -0.55* -0.55* -0	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192 0.192 0.017 -0.058 -0.0058 -0.008** -0.308 0.267 -0.242 -0.117 -0.092 0.358*	generation (9 20 -0.113 0.388** 0.238 -0.388** -0.188 -0.246 -0.246 -0.246 0.004 0.229 0.179 0.488** -0.013 -0.163 -0.538** 0.113 0.113 -0.129 -0.079 0.246	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.104 0.504** -0.029 0.104 0.504** 0.129 0.004 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.221** -0.129 -0.146 -0.221 -0.146 -0.221 -0.104 -0.221 -0.146 -0.221 -0.104 -0.229 -0.104 -0.229 -0.146 -0.229 -0.104 -0.229 -0.146 -0.229 -0.104 -0.229 -0.146 -0.229 -0.104 -0.229 -0.146 -0.221 -0.129 -0.146 -0.221 -0.129 -0.146 -0.221 -0.129 -0.146 -0.221 -0.129 -0.146 -0.221 -0.129 -0.146 -0.221 -0.146 -0.221 -0.129 -0.146 -0.229 -0.146 -0.229 -0.104 -0.229 -0.146 -0.229 -0.104 -0.229 -0.129 -0.146 -0.229 -0.104 -0.229 -0.104 -0.229 -0.146 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.229 -0.104 -0.221 -0.146 -0.221 -0.146 -0.221 -0.146 -0.146 -0.221 -0.146 -0.	Ievels (g/l) Al Control 0.108 -0.192 -0.333 -0.192 0.133 -0.092 0.008 0.308* -0.067 -0.108 -0.267 -0.267 -0.275* 0.200* -0.008 -0.025 0.300* 0.008 -0.092 0.008 -0.092 0.233	bino plant re 10 -0.208 -0.058 0.117 0.142 -0.033 -0.042 -0.033 -0.142 0.033 -0.142 0.033 -0.042 0.003 0.042 0.042 0.003 0.042 0.0042 0.0058 0.017 0.058 0.0092 -0.007 0.018 0.017 0.058 0.017 0.018 0.017 0.058 0.017 0.018 0.017 0.058 0.017 0.018 0.018 0.017 0.018	generation (9 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175 0.000 0.150 -0.025 0.000 0.025 0.000 0.025 0.000 -0.125 0.050 -0.125 0.050 0.100 0.325* -0.100 0.050 -0.025	30 -0.054 -0.179 -0.229 0.221 0.171 0.071 -0.038 0.038 -0.063 -0.013 -0.013 -0.154 0.004 -0.146 0.004 0.013 -0.013 -0.013 -0.013
$ \begin{array}{c} { { { { { { { { { { { { { { { { { { $	G Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392** -0.442** 0.183 0.533** 0.408** 0.108 1.225** -0.325* 0.000 -0.750** -0.475** 0.325* -0.242 -0.192 0.033 0.483** -0.042	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.283 0.242 0.192 0.292 -0.033 0.692** 0.017 -0.058 -0.608** -0.608** -0.267 -0.242 -0.117 -0.92 -0.338* 0.267 -0.242 -0.242 -0.117 -0.92 -0.358* 0.058	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246 -0.246 -0.246 0.004 0.229 0.179 0.079 0.488** -0.13 -0.163 -0.538** 0.113 -0.129 -0.129 -0.129 -0.079 0.246 0.0079	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.029 0.104 0.504** 0.129 0.004 -0.229 -0.104 0.021 0.021 0.146 0.096	Ievels (g/l) Ar Control 0.108 -0.192 0.233 -0.192 0.133 -0.092 0.0308* -0.067 0.108 -0.267 -0.125 -0.400** -0.025 0.300* 0.008 -0.025 0.300* 0.008 -0.025 0.300* 0.008 -0.025 0.300* 0.008 -0.025 0.300* 0.008 -0.025 0.300* 0.008	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033 0.108 -0.142 0.033 -0.042 -0.042 -0.042 0.083 0.042 0.042 0.083 0.042 -0.008 -0.042 -0.008 -0.08	generation (\$ 20 -0.175 0.100 -0.150 0.050 0.000 -0.175 0.000 -0.175 0.000 -0.175 0.000 -0.175 0.000 0.150 -0.025 0.050 0.000 -0.025 0.000 -0.025 0.050 -0.050 -0.100 0.325* -0.100 0.050 -0.025 -0.100	30 -0.054 -0.179 -0.229 0.221 0.171 0.071 -0.038 0.038 0.188 -0.063 -0.013 -0.021 0.154 0.004 -0.146 0.004 0.013 -0.013 -0.013 -0.013 -0.013 -0.013
$ \begin{array}{c} { { { { { { { { { { { { { { { { { { $	G Control -0.192 0.958** -0.217 -0.267* -0.792** -0.792** -0.442** 0.183 0.533** 0.408** 0.108 1.225** -0.325* -0.325* -0.325* -0.750** -0.750** -0.750** -0.750** -0.242 -0.192 0.033 0.483** -0.042 -0.042 -0.042	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.408** -0.283 0.242 0.192 0.292 -0.033 0.692** -0.058 -0.608** -0.308 0.267 -0.242 -0.117 -0.922 0.358* 0.058 0.033	generation (9 20 -0.113 0.388** 0.238 -0.388** -0.188 -0.246 -0.246 -0.246 -0.246 0.004 0.229 0.179 0.079 0.488** 0.113 -0.163 -0.538** 0.113 0.113 -0.129 -0.129 -0.079 0.246 0.096 -0.004	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.029 0.104 0.004 -0.421** 0.129 0.004 -0.229 -0.104 0.021 0.146 0.096 0.071	Ievels (g/l) All Control 0.108 -0.192 -0.233 -0.192 0.133 -0.092 0.0308* -0.067 0.108 -0.255*//-0.025 -0.400** -0.025 0.300* 0.008 -0.025 0.300* 0.008 -0.025 0.300* 0.008 -0.023 0.108 -0.0233 0.108 -0.167	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033 0.108 -0.142 0.033 0.108 -0.142 0.033 0.042 -0.042 -0.042 0.083 0.042 0.042 0.022* -0.013 -0.028 -0.008 -0.017 0.108 -0.017 0.108 -0.008 -0.017 0.108 -0.008 -0.008 -0.008 -0.008 -0.008 -0.007 -0.008 -0.008 -0.007 -0.008 -0.008 -0.007 -0.008 -0.008 -0.007 -0.008 -0.008 -0.007 -0.008 -0.008 -0.007 -0.008 -0.008 -0.007 -0.008 -0.006 -0.006 -0.008 -0.006 -0.008 -	generation (\$ 20 -0.175 0.100 -0.150 0.175 0.050 0.000 -0.175 0.000 -0.150 -0.025 0.050 0.000 0.025 0.050 0.000 -0.025 0.050 0.050 -0.100 0.325* -0.100 0.052 -0.150 -0.150	30 -0.054 -0.179 -0.229 0.221 0.171 0.038 0.038 0.188 -0.063 -0.013 -0.013 -0.021 0.154 0.004 -0.146 0.004 0.013 -0.013 -0.013 0.038 -0.013 0.038
$\begin{array}{c} { { { { Crosses } } } \\ \hline { { { { Crosses } } } \\ \hline { { { L}_1 \times T_1 } \\ { { L}_1 \times T_2 } \\ \hline { { { L}_1 \times T_3 } \\ \hline { { L}_1 \times T_4 } \\ \hline { { { L}_1 \times T_5 } \\ \hline { { L}_2 \times T_1 } \\ \hline { { { L}_2 \times T_2 } \\ \hline { { L}_2 \times T_2 } \\ \hline { { { L}_2 \times T_3 } \\ \hline { { L}_2 \times T_3 } \\ \hline { { { L}_2 \times T_3 } \\ \hline { { L}_2 \times T_5 } \\ \hline { { { L}_2 \times T_5 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_3 \times T_1 } \\ \hline { { { L}_4 \times T_1 } \\ \hline \\ \hline { { { L}_4 \times T_1 } \\ \hline { { L}_4 \times T_1 \\ \hline \\ \hline { { L}_4 \times T_1 \\ \hline \\ \hline { { L}_4 \times T_1 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array} } } $	G Control -0.192 0.958** -0.217 -0.267* 0.108 -0.392** -0.442** 0.183 0.533** 0.408** 0.108 1.225** -0.325* 0.000 -0.750** -0.475** 0.325* -0.242 -0.192 0.033 0.483** -0.042	reen plant re 10 -0.042 0.383* -0.092 0.058 -0.042 -0.267 -0.283 0.242 0.192 0.292 -0.033 0.692** 0.017 -0.058 -0.608** -0.608** -0.267 -0.242 -0.117 -0.92 -0.338* 0.267 -0.242 -0.242 -0.117 -0.92 -0.358* 0.058	generation (9 20 -0.113 0.388** 0.238 0.063 -0.388** -0.188 -0.246 -0.246 -0.246 0.004 0.229 0.179 0.079 0.488** -0.13 -0.163 -0.538** 0.113 -0.129 -0.129 -0.129 -0.079 0.246 0.0079	PEG - stress 6) 30 -0.079 0.346** 0.071 0.096 -0.254 -0.179 -0.196 -0.171 0.054 0.179 0.029 0.104 0.504** 0.129 0.004 -0.229 -0.104 0.021 0.021 0.146 0.096	Ievels (g/l) Ar Control 0.108 -0.192 0.233 -0.192 0.133 -0.092 0.0308* -0.067 0.108 -0.267 -0.125 -0.400** -0.025 0.300* 0.008 -0.025 0.300* 0.008 -0.025 0.300* 0.008 -0.025 0.300* 0.008 -0.025 0.300* 0.008 -0.025 0.300* 0.008	bino plant re 10 -0.208 -0.058 0.117 0.142 0.042 -0.033 0.108 -0.142 0.033 -0.042 -0.042 -0.042 0.083 0.042 0.042 0.083 0.042 -0.008 -0.042 -0.008 -0.08	generation (\$ 20 -0.175 0.100 -0.150 0.050 0.000 -0.175 0.000 -0.175 0.000 -0.175 0.000 -0.175 0.000 0.150 -0.025 0.050 0.000 -0.025 0.000 -0.025 0.050 -0.050 -0.100 0.325* -0.100 0.050 -0.025 -0.100	30 -0.054 -0.179 -0.229 0.221 0.171 0.071 -0.038 0.038 0.188 -0.063 -0.013 -0.021 0.154 0.004 -0.146 0.004 0.013 -0.013 -0.013 -0.013 -0.013

* and ** denote significant at 0.05 and 0.01 levels of probability, respectively.

On the contrary, the cross $(L_3 \times T_2)$ involving parents with very low GCA effects for callus induction and the cross (L2 \times T₅) involving parents with very low GCA effects for plant regeneration, recorded high SCA effects for these traits under the control and10 g/l PEG, which might be due to high genetic diversity among the parents. Moreover, the parents having low GCA effects had a relatively high magnitude of non-additive gene effects and thus resulted in high SCA effects when crossed. Regarding albino plant regeneration, negative SCA effects were obtained in three out of 24 F₁ crosses under the four stress levels. On the contrary, the four crosses; $L_2 \times T_3$, $L_1 \times$ T₄, L₃ \times T₆ and L₄ \times T₁ gave positive SCA effects for this trait under the drought stress levels. Silva (2010), and Tripathy (2018) reported that quantitative inheritance of anther culture response could complicate the selection process. Combining ability analysis provides a guideline to the breeder in selecting the suitable parents and desirable cross combinations to be used in the of systematic formulation breeding the improvement program for of quantitative characters (Dar et al., 2014; Kalhoro et al., 2015). Evaluating a good combination depends on both the values of GCA and SCA. A cross combination, which has high SCA value and good parental GCA effects, may be considered as a suitable cross combination. For instance, the cross combination $L_1 \times T_3$ is considered to be promosing cross for varietal improvement purpose, as they showed significant positive SCA effect for callus induction under the four stress levels and the cross combination $L_1 \times T_2$ is considered to be promosing cross for varietal improvement purpose, as they showed significant positive SCA effect for plant regeneration under the four stress levels (Table 6) and involved two good general combiner parents (Table 5). In such cases, it would be expected that diverse genes contributing to the better general combining ability effects of the parents are available in the crosses and in the segregating generations, these are likely to give transgressive segregates. Therefore, GCA and SCA effects should be taken into account generally, when developing the strategy of the selection genotypes for obtaining of cross combination with high callus induction and high green plant regeneration ability under drought stress conditions.

References

- Abd Allah, A. A., Mohamed, A. A. and Gab Allah, M. M. (2009), "Genetic studies of some physiological and shoot characters in relation to drought tolerance in rice", *Journal* of Agricultural Research. Kafr El-Shaikh University, Vol. 35 No. 4, pp. 964–993.
- Akte, J., Yasmin, S., Bhuiyan, M. J. H., Khatun, F., Roy, J. and Goswami, K. (2016), "In vitro screening of rice genotypes using polyethylene glycol under drought stress", Progressive

Agriculture, Vol. 27 No. 2, pp. 128-135.

- Al-Ashkar, I. M. (2014), "Genetic contribution of parental genotypes on anther culture response of bread wheat F₁ hybrids", *Middle East Journal of Agriculture Research*, Vol. 3 No. 3, pp. 472–478.
- Ali, J., Nicolas, K. L. C., Akther, S., Torabi, A., Ebadi, A. A., Marfori-Nazarea, C. M. and Mahender, A. (2021), "Improved anther culture media for enhanced callus formation and plant regeneration in rice (*Oryza sativa* L.)", *Plants*, Vol. 10 No. 5, pp. 1–16.
- Andersen, S., Due, I. and Olesen, A. (1988), "Results with anther culture in some important scandinavian varieties of winter wheat", Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, Vol. 38 No. 3, pp. 289–292.
- Bagheri, N. and Jelodar, N. B. (2008), "Combining ability and heritability of callus induction and green plant regeneration in rice anther culture", *Biotechnology*, Vol. 7 No. 2, pp. 287–292.
- Biswas, J., Chowdhury, B., Bhattacharya,
 A. and Mandal, A. B. (2002), "In vitro screening for increased drought tolerance in rice", In Vitro Cellular & Developmental Biology Plant, Vol. 38 No. 5, pp. 525–530.
- Brown, D. C. W. and Thorpe, T. A. (1995), "Crop improvement through

tissue culture", World J. Microb. Biot., V11: 409–415.

- Can, N. D. and Yoshida, T. (1999), "Combining ability of callus induction and plant regeneration in sorghum anther culture", *Plant Production Science*, Vol. 2 No. 2, pp. 125–128.
- Can, N. D., Nakamura, S. and Yoshida, T. (1997), "Combining ability and genotype × environment interaction in early maturing grain sorghum for summer seeding", *Japanese Journal* of Crop Science, Vol. 66, pp. 698– 705.
- CAPMAS (2020), Central Agency for Public Mobilization, Statistics: Annual Bulletin of Statistical Crop Area and Plant Production 2020, Egypt.
- Dar, S. H., Rather, A. G., Ahanger, M. A. and Talib, S. (2014), "Gene action and combining ability studies for yield and component traits in rice (*Oryza sativa* L.): A review", *Journal of Plant and Pest Science*, Vol. 1 No. 3, pp. 110–127.
- Devaux, P. and Pickering, R. (2005), "Haploids in the improvement of Poaceae", In: *Haploids in Crop Improvement II*, Springer, Heidelberg, Berlin, Germany, pp. 215–242.
- Dewi, I. S., Purwokob, B. S., Hajrial, A., Somantria, I. H. and Chozinb, M. A. (2009), "Plant regeneration from anther cultures of several genotypes

of *indica* rice tolerant to aluminium toxicity", *Indonesian Journal of Agricultural Science*, Vol. 2 No. 1, pp. 1–5.

- Dita, M. A., Rispail, N., Prats, E., Rubiales, D. and Singh, K. B. (2006), "Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes", *Euphytica*, Vol. 147 No. 1, pp. 1–24.
- Ehsanpour, A. A. and Razavizadeh, R. (2005), "Effect of UV-C on drought tolerance of alfalfa (*Medicago sativa*) callus", *American Journal of Biochemistry* and Biotechnology, Vol. 1 No. 2, pp. 107–110.
- El-Hennawy, M. A., Abdalla, A. F., Shafey, S. A. and Al-Ashkar, I. M. (2011), "Production of doubled haploid wheat lines (*Triticum aestivum* L.) using anther culture technique", *Annals of Agricultural Sciences*, Vol. 56, pp. 63–72.
- El-Hennawy, M. A., Zaazaa, E. I., Al-Ashkar, I. M. and Hawash, A. A. (2016), "Combining ability of callus induction and plant regeneration in canola (*Brassica napus* L.) anther culture", *Middle East Journal of Agriculture Research*, Vol. 5 No. 4, pp. 422–429.
- Forster, B. P.; Herberle-Bors, E., Kasha, K. J. and Touraev, A. (2007), "The resurgence of haploids in higher plants", *Trends in Plant Science*, Vol. 12 No. 8, pp. 368–375.

- Germana M. A. (2011), "Anther culture for haploid and doubled haploid production", *Plant Cell, Tissue and Organ Culture*, Vol. 104 No. 3, pp. 283–300.
- Gholizadeh, A., Dehghani, H., Khodadadi, M. and Gulick, P. J. (2018), "Genetic combining ability of coriander genotypes for agronomic and phytochemical traits in response to contrasting irrigation regimes", *PLOS One*, Vol. 13 No. 6, pp. 1–15.
- Hamayun, M., Khan, S. A., Shinwari, Z. K., Khan, A. L., Ahmad, N. and Lee, I. J. (2010), "Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean", *Pakistan Journal of Botany*, Vol. 42 No. 2, pp. 977–986.
- Hassawi, D. S., Qrunfleh, I. and Dradkah, N. (2005), "Production of doubled haploids from some Jordanian wheat cultivars via anther culture technique", *Journal of Food*, *Agriculture and Environment*, Vol. 3, pp. 161–164.
- He, P., Shen, L. S., Lu, C. F., Chen, Y. and Zhu, L. H. (1998), "Analysis of quantitative trait loci which contribute to anther culture ability in rice (*Oryza sativa* L.)", *Molecular Breeding*, Vol. 4, pp. 165–172.
- He, T., Yang, Y., Tu, S. B., Yu, M. Q. and Li, X. F. (2006), "Selection of interspecific hybrids for anther culture of indica rice", *Plant Cell, Tissue and Organ Culture*, Vol. 86

No. 2, pp. 271–277.

- Hou, L., Ullrich, S. E. and Kleinhofs, A. (1994), "Inheritance of anther culture traits in barley", *Crop Science*, Vol. 34, pp. 1243–1247.
- Jain, S. M. (2001), "Tissue culturederived variation in crop improvement", *Euphytica*, Vol. 118 No. 2, pp. 153–166.
- Kacem, N. S., Delporte, F., Muhovski, Y., Djekoun, A. and Watillon, B. (2017), "In vitro screening of durum wheat against water stress mediated through polyethylene glycol", Journal of Genetic Engineering and Biotechnology, Vol. 15, pp. 239– 247.
- Kalhoro, F. A., Rajpar, A. A., Kalhoro, S. A., Mahar, A., Ali, A., Otho, S. A., Soomro, R. N., Ali, F. and Baloch, Z. A. (2015), "Heterosis and combining ability in F₁ population of hexaploid wheat (*Triticum aestivum* L.)", *American Journal of Plant Sciences*, Vol. 6, pp. 1011– 1026.
- Kempthorne, O. (1957), An introduction to genetic statistics, John Wiley and Sons, Inc, New York. USA.
- Kim, H. S., Lee, Y. T., Lee, S. Y. and Kim, T. S. (1991), "Anther culture efficiency in different rice genotypes under different cold pretreatment durations and culture temperatures", *Research Reports of the Rural Development Administration*, *Bio/Technolog*, Vol. 33, pp. 5–13.

- Kwon, Y. S., Kim, K. M., Eun, M. Y. and Sohn, J. K. (2002), "QTL mapping and associated marker selection for the efficacy of green plant regeneration in anther culture", *Plant Breeding*, Vol. 121, pp. 10–16.
- Liang, G. H., Qi, J. and Hassawi, D. S. (1990), "A direct generation system for wheat haploid production in wheat", *Biotechnology in Agriculture and Forestry*, Vol. 13, pp. 425–434.
- Masojc, P., Lukow, O. M., McKenzie, R.
 I. H. and Howes, N. K. (1993), "Responsiveness to anther culture in cultivars and F₁ crosses of spring wheat", *Canadian Journal of Plant Science*, Vol. 73 No. 3, pp. 777–783.
- Mercy, S. T. (1990), *Basic studies in rice anther culture*, Daya Publishing House, New Delhi, India, 49–64.
- Mohiuddin, A. K. M., Karim, N. H. and Sultana, S. (2014), "Development of improved doubled haploids through anther culture of indica rice (*Oryza* sativa L.)", Annals of Biological Research, Vol. 5 No. 10, pp. 6–13.
- Mon, H. Y., Myint K. T., Htut, H. A. and Htwe, N. M. (2020), "Development of double haploid lines from F₁ cross of Yar-8 x Thee Htat Yin genotypes through anther culture", *Journal of Agriculture and Sustainability*, Vol. 13, pp. 1–9.
- Murashige, T. and Skoog, F. A. (1962), "Revised medium for rapid growth and bioassays with tabacco tissue

cultures", *Plant Physiology*, Vol. 15 No. 3, pp. 473–497.

- Nepomuceno, A. L., Oostrerhuis, D. M. and Stewart, J. M. (1998), "Physiological responses of cotton leaves and roots to water deficit induced by polyethylene glycol", *Environmental and Experimental Botany*, Vol. 40 No. 1, pp. 29–41.
- Predieri, S. (2001), "Mutation induction and tissue culture in improving fruits", *Plant Cell, Tissue and Organ Culture*, Vol. 64 No. 2, pp. 185–210.
- Predieri, S. and Di Virgilio, N. (2007), "In vitro mutagenesis and mutant multiplication", In Protocols for micro propagation of woody trees and fruits, Springer, Dordrecht, Netherlands, pp. 323–333.
- Purwoko, B. S., Dewi, I. S. and Khumaida, K. (2010), "Rice anther culture to obtain doubled haploids with multiple tolerances", Asia-Pacific Journal of Molecular Biology and Biotechnology, Vol. 18 No. 1, pp. 55–57.
- Quimio, C. A. and Zapata, F. J. (1990), "Diallel analysis of callus induction and green plant regeneration in rice anther culture", *Crop Science*, Vol. 30 No. 1, pp. 188–192.
- Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P. and Dhawan, A. K. (2011), "Developing stress tolerant plants through *in vitro* selection an overview of the recent progress", *Environmental and Experimental*

Botany, Vol. 71 No. 1, pp. 89-98.

- Sabesan, T. and Saravanan, K. (2016), "In vitro screening of Indica rice genotypes for drought tolerance using polyethylene glycol", International Journal of Advances in Agricultural and Environmental Engineering, Vol. 3 No. 2, pp. 375–380.
- Sakthivelu, G., Devi, M. A., Giridhar, P., Rajasekaran, T., Ravishankar, G. A., Nedev, T. and Kosturkova, G. (2008), "Drought-induced alterations in growth, osmotic potential and *in vitro* regeneration of soybean cultivars", *General and Applied Plant Physiology*, Vol. 34, pp. 103– 112.
- Seguí-Simarro, J. M. (2010), "Androgenesis revisited", *Botanical Review*, Vol. 76 No. 3, pp. 377–404.
- Sharma, A., Lal, D., Sutradhar, M., Pradhan, H. and Kumari, N. (2018), "Indirect regeneration of japonica rice (*Oryza sativa* L.) varieties through anther culture", *International Journal of Current Microbiology and Applied Sciences*, Vol. 7 No. 8, pp. 667–677.
- Silva, T. D. (2010), "Indicia rice anther culture: can the impasse be surpassed?", *Plant Cell, Tissue and Organ Culture (PCTOC)*, Vol. 100 No. 1, pp. 1–11.
- Steel, R. G. D. and Torrie, J. H. (1980), *Principles and Procedures of Statistics*, McGraw Hill Co., New

York, USA.

- Sun, C. S., Wu, S. C., Wang, C. C. and Chu, C. C. (1979), "The deficiency of soluble proteins and plastid ribosomal RNA in the albino pollen plantlets of rice", *Theoretical and Applied Genetics*, Vol. 55 No. 5, pp. 193–197.
- Torres, E. A. and Geraldi, I. O. (2007), "Partial diallel analysis of agronomic characters in rice (*Oryza sativa* L.)", *Genetics and Molecular Biology*, Vol. 30 No. 3, pp. 605–613.
- Touraev, A., Forster, B. P. and Jain, S. M. (2009), Advances in haploid production in higher plants, Springer, Berlin, Germany, pp. 189– 199.
- Tripathy, S. K. (2015), "In vitro screening of callus cultures and regenerants for drought tolerance in upland rice", *Research Journal of Biotechnology*, Vol. 10 No. 6, pp. 23–28.
- Tripathy, S. K. (2018), "Anther culture for double haploid breeding in rice-a way forward", *Rice Genomics*, *Genetics and Breeding*, Vol. 9 No. 1, pp. 1–6.
- Tripathy, S. K., Swain, D., Mohapatra, P. M., Prusti, A. M., Sahoo, B., Panda, S. and Behera, S. K. (2019), "Exploring factors affecting anther culture in rice (*Oryza sativa* L.)", *Journal of Applied Biology and Biotechnology*, Vol. 7 No. 2, pp. 87–92.

- Verma, O. P. (2003), "Diallel analysis in rice (*Oryza sativa* L.) for physiological traits", *Madras Agricultural Journal*, Vol. 90, pp. 637–642.
- Vennapusa, A. R., Vemanna R. S., Reddy, B. H. R., Babitha, K. C., Kiranmai, K., Nareshkumar, A. and Sudhakar, C. (2015), "An efficient callus induction and regeneration protocol for a drought tolerant rice indica genotype AC39020", *Plant Sciences*, Vol. 3, pp. 248–254.
- Wani, S. H., Sofi, P. A., Gosal, S. S. and Singh, N. B. (2010), "In vitro screening of rice (Oryza sativa L) callus for drought tolerance", Communications in Biometry and Crop Science, Vol. 5 No. 2, pp. 108– 115.
- Yamagishi, M., Otani, M., Higashi, M., Fukuta, Y., Fukui, K., Yano, M. and Shimada, T. (1998), "Chromosomal regions contrilling anther culturability in rice (*Oryza sativa* L.)", *Euphytica*, Vol. 103, pp. 227– 234.
- Yan, J., Xue, Q. and Zhu, J. (1996), "Genetic studies of anther culture ability in rice (*Oryza sativa*)", *Plant Cell, Tissue and Organ Culture*, Vol. 45 No. 3, pp. 253–258.
- Zamani, I., Gouli-Vavdinoudi, E., Kovacs, G., Xynias, I., Roupakias, D. and Barnabas, B. (2003), "Effect of parental genotypes and colchicine treatment on the androgenic response of wheat F₁ hybrids", *Plant*

Breeding, Vol. 122 No. 4, pp. 314–317.

Zapata, A. F. J., Torrizo, L. B. and Ando, A. (2004), "Current developments in plant biotechnology for genetic improvement: the case of rice (*Oryza sativa* L.)", World Journal of Microbiology and Biotechnology, Vol. 11, pp. 393–399.

Zapata, F. J., Aldemita, R. R., Ella, E. S.

and Cho, M. S. (1990), *Isolated microspore culture of rice at the international rice research institute*, Rice genetics II: Proceedings of the Second International Rice Genetics Symposium, pp. 311–319.

Zhu, J. (1992), "Mixed model approaches for estimating genetic variances and covariances", *Journal of Biomathematics*, Vol. 7, pp. 1–11.